Web cookies (also called HTTP cookies, browser cookies, or simply cookies) are small pieces of data that websites store on your device (computer, phone, etc.) through your web browser. They are used to remember information about you and your interactions with the site.
Purpose of Cookies:
Session Management:
Keeping you logged in
Remembering items in a shopping cart
Saving language or theme preferences
Personalization:
Tailoring content or ads based on your previous activity
Tracking & Analytics:
Monitoring browsing behavior for analytics or marketing purposes
Types of Cookies:
Session Cookies:
Temporary; deleted when you close your browser
Used for things like keeping you logged in during a single session
Persistent Cookies:
Stored on your device until they expire or are manually deleted
Used for remembering login credentials, settings, etc.
First-Party Cookies:
Set by the website you're visiting directly
Third-Party Cookies:
Set by other domains (usually advertisers) embedded in the website
Commonly used for tracking across multiple sites
Authentication cookies are a special type of web cookie used to identify and verify a user after they log in to a website or web application.
What They Do:
Once you log in to a site, the server creates an authentication cookie and sends it to your browser. This cookie:
Proves to the website that you're logged in
Prevents you from having to log in again on every page you visit
Can persist across sessions if you select "Remember me"
What's Inside an Authentication Cookie?
Typically, it contains:
A unique session ID (not your actual password)
Optional metadata (e.g., expiration time, security flags)
Analytics cookies are cookies used to collect data about how visitors interact with a website. Their primary purpose is to help website owners understand and improve user experience by analyzing things like:
How users navigate the site
Which pages are most/least visited
How long users stay on each page
What device, browser, or location the user is from
What They Track:
Some examples of data analytics cookies may collect:
Page views and time spent on pages
Click paths (how users move from page to page)
Bounce rate (users who leave without interacting)
User demographics (location, language, device)
Referring websites (how users arrived at the site)
Here’s how you can disable cookies in common browsers:
1. Google Chrome
Open Chrome and click the three vertical dots in the top-right corner.
Go to Settings > Privacy and security > Cookies and other site data.
Choose your preferred option:
Block all cookies (not recommended, can break most websites).
Block third-party cookies (can block ads and tracking cookies).
2. Mozilla Firefox
Open Firefox and click the three horizontal lines in the top-right corner.
Go to Settings > Privacy & Security.
Under the Enhanced Tracking Protection section, choose Strict to block most cookies or Custom to manually choose which cookies to block.
3. Safari
Open Safari and click Safari in the top-left corner of the screen.
Go to Preferences > Privacy.
Check Block all cookies to stop all cookies, or select options to block third-party cookies.
4. Microsoft Edge
Open Edge and click the three horizontal dots in the top-right corner.
Go to Settings > Privacy, search, and services > Cookies and site permissions.
Select your cookie settings from there, including blocking all cookies or blocking third-party cookies.
5. On Mobile (iOS/Android)
For Safari on iOS: Go to Settings > Safari > Privacy & Security > Block All Cookies.
For Chrome on Android: Open the app, tap the three dots, go to Settings > Privacy and security > Cookies.
Be Aware:
Disabling cookies can make your online experience more difficult. Some websites may not load properly, or you may be logged out frequently. Also, certain features may not work as expected.
16 April 2024. After a 9-month sabbatical stay at the University of Concepcion in Chile, Hannes returned to US soil today, full of experiences, data, and a chest full of samples of larval, juvenile, and adult Chilean silversides. Grateful to the many helpful colleagues and friends, a first year of experiments are in the bag, resulting in a number of interesting findings that await further analysis and - crucially - a second, replicate experiment in the year to follow. In other words, while the sabbatical is now over - the project of revealing co- and countergradient variation in the Chilean silverside is still very much underway. On to the next chapter!
The cove of Puda near Dichato to the north of Concepcion, Chile
This article has been reposted from UConn Today. Read the original here
October 12, 2023 | Elaina Hancock - UConn Communications
Snap Shot: How Will Organisms Adapt to Climate Change?
A UConn Marine Sciences researcher is spending time in Chile studying an important forage fish, and how this vital part of the food chain will adapt to a changing climate
The rocky and picturesque shores of the Pacific near Dichato
The world’s oceans have experienced record heat in 2023. With rising temperatures and increasing acidification, we don’t yet know the full extent these changes will have on marine ecosystems.
UConn Department of Marine Sciences Associate Professor Hannes Baumann studies fish, including important forage fishes such as sand lance and silverside, to see how they adapt to changes in environmental conditions. Many species are already adapted to temperature gradients that exist across latitudes on Earth, and Baumann believes that from these patterns, we can learn how fish may adapt to climate change – in time. This so-called “Space-for-Time” approach is one tool scientists use to predict the long-term consequences of climate change.
As part of his post-doctoral work, Baumann experimentally found similar climate adaptation patterns in Atlantic and Pacific silversides. He suspects that a higher-order relationship exists between the strength of adaptation and the strength of the underlying climate gradient.
Now, with a grant from the National Science Foundation, Baumann has the opportunity to return to and expand his study of silversides to a South Pacific species and study how they are adapted to their coastal latitudinal temperature gradient.
“We are hoping the prove the validity of a principle of evolutionary adaptation for the Southern Hemisphere. It will then allow us to compare and integrate the patterns with the silverside species from the Northern Hemisphere, which evolutionary ecologists have been studying for decades already,” says Baumann.
After a two-week proof-of-concept trip to Chile in the Fall of 2022, Baumann established connections with local fishermen and colleagues at the Universidad de Concepcion in Dichato, Chile.
“To get spawning fish, we visit fish markets – called here caletas de pescadores – and first establish a connection to those who make a living catching silversides (“pejerrey del mar”). We’re making friends to explain our unusual request to accompany a fisherman during the night. This is the best method to make sure that the eggs get fully fertilized," he says.
In the Summer of 2023, Baumann began his yearlong sabbatical and has now moved to Chile for five months to begin the main experimental work on Chilean silversides, their adaptations, and the strength of those adaptations to underlying climate change.
17 Juli 2023. Hannes just moved for 5 months to a small village called Dichato near Concepción in south-central Chile to build and then conduct a large common garden experiment on the Chilean silverside Odontesthes regia.
It's still early, disorienting days - but thanks to the ever optimistic Mauricio Urbina, the collaborator on this project, the mood is good and full of anticipation.
A two-week stint to south-central Chile ends with a successful proof-of-concept that planned research on a Chilean silverside species will be highly feasible, opening avenues for a budding US-Chilean collaboration.
Fishing boats in Caleta Tumbes near Concepcion, Chile
Concepcion (Chile), 12 October 2022. Two incredible weeks of adventure and scientific exploration for new and potentially groundbreaking science are coming to a close. In preparation for next year’s sabbatical, Hannes has met and made friends with colleagues at the Universidad the Concepción in southern Chile, travelled some 2,000 miles along the stunning Chilean coast, scoured local fish markets and accompanied artisanal fishermen on their nightly pursuits. The goal: finding a small fish that looks all too familiar – a silverside!
The Chilean silverside (Odontesthes regia), locally known as ‘pejerrey’, looks eerily similar to the Atlantic silverside (Menidia menidia), the model that has already inspired decades of eco-evolutionary research across many labs including ours. And like its northern hemisphere cousin, Chilean silversides occur over an astounding geographical range along the South American Pacific coast, all the way from Puerto Montt (42°S) to southern Peru (10°S)! There, average coastal temperatures change predictably with latitude and therefore provide a natural climate gradient in space that could serve as an analogue to climate change in time. Whether and how Chilean silversides show similar local adaptations to their latitudinal gradient is a big question – and next year’s sabbatical will start to provide some important answers.
Pejerrey are usually caught with gillnets as here in the picture
A Chilean silverside embryo of a few days post fertilization. Eyes beginning to pigment and a prominent yolk artery provides nutrients for growth
A Chilean silverside embryo close to hatch
To prepare, Hannes spent two weeks in September and October 2022 in Chile. Hosted by the ever-enthusiastic Prof. Mauricio Urbina from the zoology department and thanks to a visiting grant from the university, we were ready to start exploring. Our specific goal for this trip was to find spawning-ripe pejerrey in two of the planned four locations along the coast.
The luck was on our side and the timing of the visit turned out to be perfect. On a nightly fishing trip with the artisanal fisherman Juan Figueroa from the small village of Tumbes near Concepción, we caught running ripe males and females, observed naturally deposited egg masses in nearshore waters, and were able to subsequently document the temperature-dependent development of newly fertilized embryos.
Left: During spawning season, pejerrey deposit enormous masses of eggs on vegetation in shallow water. Right: The Marine Station of the Universidad de Concepcion in Dichato
On an epic road-trip up the coast all the way to Coquimbo, Hannes and graduate student Rocio Barrios stopped at many villages and local fish markets, gathering information and finally securing precious samples of spawning-ripe pejerrey from a fisherman at the Coquimbo fish market. Transporting the embryos was a success, too, thereby paving the way for the proposed research plan next year.
The real, big common garden experiments will take place from September – December 2023 at the Dichato Marine Station near Concepción, a small but recently renovated station with excellent facilities for our purposes.
On the road during our trip to Coquimbo
Beautiful spring at the scenic Coliumo Bay near Concepcion
While at the University, Hannes also gave a seminar talk to the students and faculty explaining his excitement and plans for coming to Chile, which received great interest, curiosity, and students expressing interest to play a part in this.
Baumann, H. 2022. Principles of local adaptation across environmental gradients (or: why I’m so darn interested in studying Chilean silversides). Invited seminar talk. University de Concepción, 29 Sep 2022
A gillnet used to fish for Chilean silversides on the beach of Tumbes near Concepcion
A newly hatched Chilean silverside measuring already an astounding 9 mm TL