Publications & Presentations

World Ocean’s Day at 3rd grade Groton Elementary School

7 June 2022. This is World Ocean Week and many Marine Science students and faculty do their bit to increase outreach to our community. Hannes had the privilege of dropping by the 3rd graders of the Catherine Kolnaski Magnet School, talking about what Marine Scientists do, which ocean critters eat another and "What was the weirdest fish you ever caught?" Oh, and "Are you really sure that the Megalodon [Charchardon megalodon] is no longer alive?" Thank you to Mr. Moon, Mrs. Laudone for the opportunity to come visit the school!

WorldOceanDay01-CKMS7JUN22

WorldOceanDay02-CKMS7JUN22

Unveiling a new sturgeon outreach sign at Hammonassett State Park

SturgeonSign03
On May 7th, project members, CTDEEP, and CT SeaGrant representatives unveil the new outreach sign about Atlantic sturgeon at Hammonassett State Park (f.l.t.r. Mason Trumble, CTDEEP deputy commissioner; Tom Savoy, CTDEEP scientist; Kelli Mosca, CTDEEP; Joe Cunningham, CTDEEP; Hannes Baumann, UConn; Sylvain Deguise, CT SeaGrant Director; Jacque Benway, CTDEEP

May 7th, 2022. Despite the chilly, rainy weather on Hammonassett Park's Meigs Point and the resultant lack of a beach crowd, the mood among the group was elated and proud. For over two years, our lab together with researchers from the Connecticut Department of Energy and Environmental Protection (CTDEEP, Tom Savoy, Jacque Benway) have worked tirelessly to better understand the growth and seasonal movement patterns of Atlantic Sturgeon (Acipenser oxyrhynchus) in Long Island Sound and the Connecticut River. The research project was funded by Connecticut SeaGrant (NOAA Award NA18OAR4170081, Project R/LR-29).

Kelli Mosca did her M.S. thesis research using fin spine sections for growth analyses and telemetry data for movement patterns. After defending in March 2022, she immediately accepted an offer by CTDEEP to become a full time staff scientist. Congrats again, Kelli!

The sign was designed by Joe Cunningham with pictures from Jacob Snyder (RedSkiesPhotography.com). It combines several outreach goals. 1) Convey to people that these ancient, iconic fish actually occur in our waters, 2) teach the interested readers that sturgeon spawn in freshwater and then grow up in saltwater, 3) give readers a sense of the ongoing research on Atlantic sturgeon, 4) tell the public that sturgeon may come back to Long Island Sound and River, but need protection. Particularly, they rely on any accidental catches to be released and reported. The sign is also available in Spanish language to broaden its reach.

SturgeonSign01
The sturgeon outreach sign at Hammonassett State Park

MEPS just published our most recent paper on sand lance CO2-sensitivity!

A potential ripple effect from carbon in the atmosphere could have severe impacts throughout the ocean ecosystem

MEPS-sandlance
This photo shows sand lance embryos that have and have not hatched. Sand lance have trouble hatching at future ocean CO2 levels (photo courtesy of Emma Cross).


By Elaina Hancock. Reposted from UConn Today, 7 April 2022

When carbon is emitted into the atmosphere, about a quarter of it is absorbed by the earth’s oceans. As the oceans serve as a massive ‘sink’ for carbon, there are changes to the water’s pH – a measure of how acidic or basic water is. As oceans absorb carbon, their water becomes more acidic, a process called ocean acidification (OA). For years, researchers have worked to understand what effect this could have on marine life.

While most research so far shows that fish are fairly resilient to OA, new research from UConn, the University of Washington, the National Oceanic and Atmospheric Administration (NOAA), and Southern Connecticut State University, shows that an important forage fish for the Northwest Atlantic called sand lance is very sensitive to OA, and that this could have considerable ecosystem impacts by 2100. The team’s findings have just been published in Marine Ecology Progress Series 687.

Sand lance spawn in the winter months in offshore environments that tend to have stable, low levels of CO2, explains UConn Department of Marine Sciences researcher and lead author Hannes Baumann.

“Marine organisms are not living in a uniform ocean,” Baumann says. “In near shore environments, large CO2 fluctuations between day and night and between seasons are the norm, and the fish and other organisms are adapted to this variability. When we stumbled upon sand lances we suspected they are different. We thought that a fish that lives in a more open-ocean offshore environment might be more sensitive than the near-shore fish because there’s just much less variability.”

The project was a collaboration with physical oceanographers, including Assistant Professor of Marine Sciences Samantha Siedlecki and Michael Alexander from NOAA’s Physical Sciences Laboratory in Boulder, Colorado, who modeled CO2 levels in 2050 and 2100 for a specific part of the Gulf of Maine where sand lance spawn. Then Baumann and his team reared sand lance embryos in the lab under experimentally higher CO2 levels matching the projected levels.

There are instances of direct fish mortality as result of elevated CO2, but they are rare, says Baumann. However, sand lance embryos proved to be exceptionally sensitive, and fewer embryos hatched under future oceanic CO2 conditions. The researchers repeated the experiments three more times to avoid jumping to conclusions but each time they observed the same result.

“We found that embryo survival-to-hatch decreased sharply with increasing CO2 levels in the water, concluding that this is one of the most CO2-sensitive fish species studied thus far,” Baumann says.

Sand lances are surely one of the most important forage fish here on the Northwest Atlantic shelf… The humpback whales, sharks, tuna, cod, shearwaters, terns — you name it — they are all relying on sand lance.

With this interdisciplinary approach combining model forecasts and serial experimentation the researchers arrived at a picture that is much more specific.

“We consequently applied principles of serial experimentation, which is a most timely and important topic in ocean acidification research right now,” Baumann says. “Because our findings are backed up by repeated independent evidence, they are more robust than many published ocean acidification studies to date.”

In addition to preventing many sand lance embryos from developing normally, the researchers document a second negative, and novel, response to elevated CO2. Higher CO2 levels appear to make it harder for embryos to hatch.

Baumann explains the lowered pH likely renders enzymes needed for successful hatching less effective, leaving the embryos unable to break through their eggshell (chorion) to hatch.

The results show that by 2100, due to acidification, sand lance hatching success could be reduced to 71% of today’s levels. Since sand lance are such a critical component of the food web of the Northwest Atlantic, this marked decrease in sand lance would have profound impacts throughout the ecosystem.

“Sand lances are surely one of the most important forage fish here on the Northwest Atlantic shelf,” Baumann says. “Their range spans from the Mid Atlantic Bight all the way to Greenland. Where we studied them, on Stellwagen Bank, they are called the backbone of the ecosystem. The humpback whales, sharks, tuna, cod, shearwaters, terns — you name it — they are all relying on sand lance, and if sand lance productivity goes down, we will see ripple effects to all these higher trophic animals. Even though we humans don’t fish for sand lance, we need to take care of the species because it has such a huge effect on everything else.”

Baumann says this study supports the hypothesis that offshore, high latitude marine organisms like the sand lance may be among the most vulnerable to OA. As a result, these organisms and food webs will likely be impacted first and soon, and we must act now.

Previous research has focused on opportunistically chosen species when testing their sensitivity for ocean acidification, says Baumann, but this should change.

“We need strategic thinking about what species we are testing next, because we cannot test every marine fish species, that’s an impossible task. We should concentrate on fish species that are likely the most vulnerable, and therefore the ones that are probably being affected first and this research makes a compelling argument that those are the fish species at higher latitudes and in more offshore than nearshore environments.”


Kelli Mosca presents Master thesis research on Atlantic Sturgeon

Kelli-Mosca---sturgeon_defense

21 March 2022. Today, Baumann lab graduate student Kelli Mosca presented her Masters thesis entitled "Atlantic sturgeon (Acipenser oxyrinchus) Growth and Habitat Use in the Connecticut River and Long Island Sound". She did a marvelous job summarizing the multifaceted findings on age and growth of Atlantic sturgeon in the eastern Long Island Sound and the Connecticut River, their movement patterns based on analyses of acoustic telemetry data, while evaluating the evidence for indications that Atlantic sturgeon may utilize the Connecticut River again for spawning.

Kelli was an inspirational and cherished member of the Baumann lab, who literally mastered the challenges of being a 'whole-pandemic' Master student. Her dedication and continued work for CTDEEP were awarded by an offer for a CTDEEP Fishery Biologist I position, which she has wholeheartedly accepted. Congratulations Kelli, and all the best for the next steps in your career!

The UConn Department of Marine Sciences
Presents a Master’s Thesis Presentation by

Kelli Mosca
B.S., University of New Haven, 2017

12:00 p.m., Monday, March 21, 2022
Lowell Weicker Building, Seminar Room 103 or Via WebEx

Atlantic sturgeon (Acipenser oxyrinchus) Growth and Habitat Use in the Connecticut River and Long Island Sound

Atlantic sturgeon (ATS, Acipenser oxyrinchus) are long-lived, anadromous, and endangered fish with a wide geographical distribution along the east coast of North America. Historically known to spawn in numerous rivers, many spawning runs ended due to intense fishing pressure and habitat obstruction in the 19th and 20th centuries. This was thought to be true for the longest river in the US Northeast, the Connecticut River, until pre-migratory ATS juveniles appeared in the river in 2014. Here, I use a long-term archive of fin spine samples and three years of acoustically tagged ATS to generally expand knowledge about the ATS using the CT River and LIS, and specifically examine these empirical data for potential evidence of re-emergent spawning behavior. I analyzed 301 sections of ATS fins spines collected from 1988-2021 to determine age, annuli widths, and thus population- and individual-based growth patterns. I found that the vast majority of ATS in my study area were juveniles and sub-adults with an average (± SD) age of 7.5 ± 3.1 years and an average (± SD) length of 101 ± 26 cm. The weighed, population-based Von Bertalanffy growth model estimated a K of 0.08 (95% CL, 0.01/0.17) and a L∞ of 171.2 cm (95% CI, 129/547 cm), the latter likely showing signs of missing large adults. K and L∞ distributions showed no sign of sex-specific multi-modality. Longitudinal length back-calculations revealed the selective disappearance of faster growing phenotypes (at ages 2-6) with increasing age at capture, which is clear evidence for Lee’s phenomenon. Acoustic detections of telemetered Atlantic sturgeon (2019-2021) revealed that most sturgeon in 2019 and 2020 utilized the Lower CT River (brackish water), whereas in 2021 detections were highest in LIS (salt water). Detections in the Upper CT River (freshwater) were common but much less dense across years, with 53%, 69% and 45% of ATS detected in the Upper CT River at some point in each season (2019-2021 respectively). I found a positive relationship of fish proportion in the CT River with temperature, but an inverse relationship of fish proportion in the CT River with river discharge. On average, the arrival of fish in the CT River occurred in June, when water temperatures were 17.5 - 24.9 ºC, while the departure from the CT River generally occurred in October, coinciding with river temperatures of 15.2 - 20.4 ºC. Some of the fish utilizing the Upper CT River made directed movements to a potential spawning ground at Portland, CT (river km 47). However, these movements occurred in mid- to late August (12th -23rd), which is inconsistent with the typical spring timing of ATS spawning runs in northern populations. Fall spawning runs are only known for southern ATS populations. In addition to timing, ATS sizes in the Upper CT River also do not support spawning behavior, because fish of all sizes (72 – 154 cm TL) and ages (3-15) visited the Portland area for 0.25 – 63.25 days. I conclude that neither age nor telemetry data support the re-emergence of the CT River as an ATS spawning ground. Future work will benefit from a more even sampling of gear sizes and should examine possible explanations for ATS freshwater utilization including feeding and individual preferences.

Major Advisor: Hannes Baumann
Associate Advisor: Eric Schultz
Associate Advisor: Tom Savoy
Associate Advisor: Jacque Benway
Associate Advisor: Catherine Matassa

Lucas Jones presents his Masters Thesis research!

Lucas-HB-presentation
Lucas and Hannes celebrating the successful thesis presentation

Monday, November 22nd 2021. Big and heartfelt congratulations to Lucas Jones, who presented his Master thesis to his peers at the institute and colleagues national and international. Well done, Lucas!

A link to his recorded presentation will be posted here soon.


The UConn Department of Marine Sciences

Presents a Master’s Thesis Presentation by

Lucas Jones

B.A., University of Connecticut, 2018

4:00 p.m., Monday, November 22, 2021

Marine Sciences Building, Seminar Room 103

 

Using Low-Coverage, Whole Genome Sequencing to Study Northern Sand Lance (Ammodytes dubius) Population Connectivity in the Northwest Atlantic

 Northern sand lance (Ammodytes dubius) are key forage fish in Northwest Atlantic (NWA) shelf ecosystems, where they exclusively occur on coarse-grain, offshore sand banks. This patchy occurrence may result in genetically more fragmented, less connected populations, but traditional morphological or genomic approaches have so far been unsuccessful in fully resolving the species’ population structure and connectivity. My study pursued an alternative genomic approach, using low-coverage, whole genome sequencing (LcWGS) to address these important questions. I extracted DNA from 273 A.dubius specimens collected by collaborators from sevenregions across the species geographical range, from Greenland to New Jersey, USA. From LcWGS data, I identified 11,558,126 single nucleotide polymorphisms (SNPs) that allowed quantifying genetic differentiation between populations (FST), thereby revealing the genetic structuring of populations throughout the NWA. Despite the potentially homogenizing influence of the general north to south ocean circulation, I found a clear genetic break around Nova Scotia that delineated a northern from a southern A. dubius supergroup. Only within the southern supergroup, genetic distances increased with the geographic distance between sample sites. At the focal site of Stellwagen Bank (southern Gulf of Maine), A. dubius samples collected over several years (2014 – 2019) revealed small but significant temporal genetic differences that imply varying occupation of this offshore habitat by genetically different sand lance contingents. Inclusion of samples from the inshore congener A. americanus confirmed the clear genetic separation between both species and further determined that all sand lance caught on Stellwagen Bank are exclusively A. dubius. Overall, my work suggests the existence of two spatially distinct A. dubius populations with little ‘realized’ connectivity, which is critical knowledge to aid protection and management of offshore marine resources.

 

Major Advisor:                   Hannes Baumann

Associate Advisor:            Nina Overgaard Therkildsen

Associate Advisor:            Senjie Lin

ICES Journal of Marine Science publishes long-term fecundity study!

Concannon-etal-for-website

2 November 2021. We are happy report that the ICES Journal of Marine Science just published the last major experimental paper on Atlantic silverside CO2-sensitivity from our lab. Callie Concannon and co-authors report on two complementary, long-term rearing trials in 2015/16 and 2018/19, where silverside juveniles or newly fertilized embryos were reared under contrasting temperature and CO2 conditions to maturity. This revealed negative effects of high CO2 conditions on female fecundity, but only at the warm, not the cold temperature treatments (Fig. below). Our study and its data are novel, because they were generated by the first whole-life CO2 rearing experiment of a fish and are the first empirical fecundity effects shown for a broadcast-spawning fish species.

The paper is also special to us, because its publication marks the erstwhile conclusion of our yearlong, NSF-funded efforts (OCE#1536165) to understand the CO2 sensitivity and its mechanisms in this important forage fish and long-standing model in fish ecology and evolution. The project ran from 2015 - 2020, produced 15 publications, 2 book chapters, and over 40 presentations, while furthering the careers of a post-doc, a PhD student, 5 Master students and over 10 undergraduates.


Nature Climate Change publishes 25 generation copepod adaptation study!

Reposted from UConn Today | August 26, 2021 | By Elaina Hancock


The world’s oceans are becoming increasingly stressful places for marine life, and experts are working to understand what this means for the future. From rising temperatures; to acidification as more carbon enters the waters; to changes in the currents; the challenges are multifaceted, making experiments and projections difficult.

Copepods are small marine animals that are abundant, widely dispersed, and serve as major structural components of the ocean’s food web. A team of scientists from the University of Connecticut, Jinan University in China, and the University of Vermont have found that a species of copepod called Acartia tonsa can cope with climate change, but at a price. Their research was just published in Nature Climate Change.

“We have this problem of climate change and in the ocean, it is a multi-dimensional problem because it’s not just the warming, the ocean is becoming more acidic where pH is going down as we pump more CO2, into the atmosphere. Organisms need to cope, they are under more stress, and things are happening very fast,” says Hans Dam, UConn professor of Marine Sciences.

Dam explains that previous studies suggest some animals will be more sensitive than others to changes like shifts in pH. Prior studies with copepods showed they are not particularly sensitive to pH changes, but Dam points out those studies were only done with a single generation, or few generations, to a single stressor and shows the ability to acclimate rather than adapt. This new study not only looks at adaptation across 25 generations, it also considered both ocean warming and acidification (OWA), something that few studies have done until now.

“If you want to study the long-term effects, you must consider the fact that animals will adapt to changes or stress in the environment, but to do that you have to do the right experiments. Most people do not do those experiments with animals because it takes a long time to study in multiple generations.”

The researchers looked at fitness, or the ability of a population to reproduce itself in one generation, and how fitness would change through generations in increased OWA conditions. The first generation exposed to new OWA conditions suffered extreme reductions of over 50% of population, says Dam. It was as if OWA was a big hammer that greatly reduced the population fitness. By the third generation, the population seemed to have mostly recovered. However, by the 12th generation, the researchers began to see declines once again.

Though the copepods were able to adapt, the adaptation was limited because fitness was never fully recovered, and the researchers suspect there are some antagonistic interactions at play, leading to a tug of war situation between adaptation to warming and to acidification. These antagonistic interactions complicate predicting what responses can be expected.

James deMayo, co-author and UConn Ph.D. student adds, “Perhaps what’s important to emphasize with this project is that the effects of warming combined with acidification are not the same for every generation or organism that is adapting to that environment. That’s suggested by the data and why the adaptation is limited. While within intermediate generations, organisms might be very well adapted, in later generations, the effects of warming and acidification start to behave differently on the population. That’s one of the exciting parts about the research. It’s not a static, expected result for how organisms or their populations are going to continue to grow or decay.”

For example, deMayo explains, if you took individuals in later generations that had adapted to the experimental OWA conditions and placed them into the conditions of today’s ocean, they would not fare as well.

“That’s one negative consequence, that ability to not tolerate environmental shifts is a cost and an unpredicted consequence for evolutionary adaptation in a lot of systems, not just in copepods,” says deMayo.

41558_2021_1131_Fig1_HTML
Changes in egg production rate (EPR) and hatching success (HS) during the transgenerational experiment

The researchers point out that studies looking at single stressors run the risk of making overly simplified inferences about an organism’s ability to adapt, an especially risky proposition when making conclusions about such an integral component of the food web as copepods.

“Particularly when you involve living organisms, there are complexities that you can’t predict,” says Dam. “A priori, you might make the predictions, but you have no certainty that they’re going to unfold that way. In biology these are referred to as ‘emergent properties’ or things that you cannot predict from what you know in advance and this research is a good example.”

In thinking back to the hammer comparison, Dam says impacts in the copepod population have ripple effects through the whole food web and beyond.

“If fitness decreases by say, 10%, down the road we will have a 10% decrease in population size and since these animals are the main food source for fish, a 10% decrease in the world fishery is pretty significant,” says Dam. “And this is really the best-case scenario since in the lab, they’re essentially living in hotel-like conditions so that 10% isn’t taking into consideration other factors like predation or disease. In the real world we could see fitness recovery is actually much worse.”

Additionally, Dam points out another implication is that copepods sequester CO2 and reductions in their numbers reduce the ocean’s carbon sequestration capabilities, bad news at a time when more carbon sequestration is needed.

While the research offers promise for rapid adaptation, it is a reminder that as with many things in nature there’s a catch.

“There is some welcoming news, that yes, there is a recovery of fitness but there is also sobering news that the evolutionary rescue is not complete. There’s no such thing as a free lunch,” says Dam.

44th Larval Fish Conference held virtually 24-26 June

Groton, CT 24-26 June 2021. The long awaited and anxiously prepared virtual 44th Larval Fish Conference was held, featuring more than 240 participants from 28 countries. 58 scientific talks, including 3 keynote lectures were given via Cisco’s WebEx platform, whereas networking activities such as poster presentations, ‘Meet the Speaker’ events, and Mentor hours used the innovative Gatherly platform. The technology was working out well, the preparation paid off, and delegates were overall enthusiastic about this virtual alternative, which was forced on us by Covid-19, but may have shown us new ways and concepts to broaden the societies reach and equality.

The post-conference website is housed at https://lfc44.marinesciences.uconn.edu

Special thanks go to the scientific steering committee Eric Schultz, Jacqueline Webb, and Paul Anderson. Lauren Schaller, Anne Hill, Harley Erickson, and Kate Copeland from UConn’s conference services did a great job as well preparing and running parts of the events. Support came from NOAA’s Northeast Fisheries Science Center.


[New publication] PLOS One publishes long-term silverside growth study!

27 July 2020. Big and proud congratulations to Chris Murray, who published his last big chunk of data from his PhD research on the effects of marine climate change on coastal marine fish. The publication in PLOS One synthesized 3 years of multiple, long-term experiments on Atlantic silversides (Menidia menidia) demonstrating consistent negative growth effects on high CO2 conditions. However, sometimes it takes more than just looking at means and standard deviations to elucidate these effects. Hence, in this paper, shift functions analyzing the different percentiles of distributions are employed.


Murray, C.S. and Baumann, H. (2020) Are long-term growth responses to elevated pCO2 sex-specific in fish? PLOS One 15:e0235817


The publication was featured in UConn Today “UConn Research: More Carbon in the Ocean Can Lead to Smaller Fish

By Elaina Hancock

As humans continue to send large quantities of carbon into the atmosphere, much of that carbon is absorbed by the ocean, and UConn researchers have found high CO2 concentrations in water can make fish grow smaller.

Researchers Christopher Murray PhD ’19, now at the University of Washington, and UConn Associate Professor of Marine Sciences Hannes Baumann have published their findings in the Public Library of Science (PLoS One).

“The ocean takes up quite a bit of CO2. Estimates are that it takes up about one-third to one-half of all CO2 emissions to date,” says Murray. “It does a fantastic job of buffering the atmosphere but the consequence is ocean acidification.”

Life relies on chemical reactions and even a slight change in pH can impede the normal physiological functions of some marine organisms; therefore, the ocean’s buffering effect may be good for land-dwellers, but not so good for ocean inhabitants.

Baumann explains that in the study of ocean acidification (or OA), researchers have tended to assume fish are too mobile and tolerant of heightened CO2 levels to be adversely impacted.

“Fish are really active, robust animals with fantastic acid/base regulatory capacity,” says Murray. “So when OA was emerging as a major ocean stressor, the assumption was that fish are going to be OK, [since] they are not like bivalves or sea urchins or some of the other animals showing early sensitivities.”

The research needed for drawing such conclusions requires long-term studies that measure potential differences between test conditions. With fish, this is no easy task, says Baumann, largely due to logistical difficulties in rearing fish in laboratory settings.

“For instance, many previous experiments may not have seen the adverse effects on fish growth, because they incidentally have given fish larvae too much food. This is often done to keep these fragile little larvae alive, but the problem is that fish may eat their way out of trouble — they overcompensate – so you come away from your experiment thinking that fish growth is no different under future ocean conditions,” says Baumann.

In other words, if fish are consuming more calories because their bodies are working harder to cope with stressors like high CO2 levels, a large food ration would mask any growth deficits.

Additionally, previous studies that concluded fish are not impacted by high CO2 levels involved long-lived species of commercial interest. Baumann and Murray overcame this hurdle by using a small, shorter-lived fish called the Atlantic silverside so they could study the fish across its life cycle. They conducted several independent experiments over the course of three years. The fish were reared under controlled conditions from the moment the eggs were fertilized until they were about 4 months old to see if there were cumulative effects of living in higher CO2 conditions.

Murray explains, “We tested two CO2 levels, present-day levels and the maximum level of CO2 we would see in the ocean in 300 years under a worst-case emissions scenario. The caveat to that is that silversides spawn and develop as larvae and early juveniles in coastal systems that are prone to biochemical swings in CO2 and therefore the fish are well-adapted to these swings.”

The maximum CO2 level applied in the experiments is one aspect that makes this research novel, says Murray,

“That is another important difference between our study and other studies that focus on long-term effects; almost all studies to date have used a lower CO2 level that corresponds with predictions for the global ocean at the end of this century, while we applied this maximum level. So it is not surprising that other studies that used longer-lived animals during relatively short durations have not really found any effects. We used levels that are relevant for the environment where our experimental species actually occurs.”

Baumann and Murray hypothesized that there would be small, yet cumulative, effects to measure. They also expected fish living in sub-ideal temperatures would experience more stress related to the high CO2 concentrations and that female fish would experience the greatest growth deficits.

The researchers also used the opportunity to study if there were sex-determination impacts on the population in the varying CO2 conditions. Sex-determination in Atlantic silversides depends on temperature, but the influence of seawater pH is unknown. In some freshwater fish, low pH conditions produce more males in the population. However, they did not find any evidence of the high CO2 levels impacting sex differentiation in the population. And the growth males and females appeared to be equally affected by high CO2.

“What we found is a pretty consistent response in that if you rear these fish under ideal conditions and feed them pretty controlled amounts of food, not over-feeding them, high CO2 conditions do reduce their growth in measurable amounts,” says Murray.

They found a growth deficit of between five and ten percent, which Murray says amounts to only a few millimeters overall, but the results are consistent. The fish living at less ideal temperatures and more CO2 experienced greater reductions in growth.

Murray concludes that by addressing potential shortcomings of previous studies, the data are clear: “Previous studies have probably underestimated the effects on fish growth. What our paper is demonstrating is that indeed if you expose these fish to high CO2 for a significant part of their life cycle, there is a measurable reduction in their growth. This is the most important finding of the paper.”

This work was funded by the National Science Foundation grant number OCE #1536165. You can follow the researchers on Twitter @baumannlab1 and @CMurray187.

[Lab news] Hannes & colleagues organize a Virtual Town Hall

Banner5
23 June 2020. It’s been a remarkable day. A remarkable few months of preparation. But on this Tuesday in June, more than 250 people from all over the world logged in to a UConn WebEx Event organized by Hannes Baumann, Eric Schultz, Jacqueline Webb, Paul Anderson and Jon Hare. The event, billed as the “1st Virtual Larval Fish Science Town Hall” was of course a product of the strange and challenging times we live in right now. A consequence of almost a year of painstaking preparations for the 44th Larval Fish Conference in Mystic, CT … eclipsed by the COVID-19 pandemic that made having a physical science conference impossible.


Attendance-graph
Number of attendees per minute throughout the day. Science sessions were followed by 120-170 attendees worldwide.
Network Mentors

The Virtual Town Hall gave 16 speakers from around the world the opportunity to communicate their science, while providing a forum for the community to interact. The Early Career Committee of the AFS Early Life History Section contributed as well, organizing a round table discussion led by Kelsey Swieca with Chris Chambers, Jackie Webb, and Peter Konstantidinis. Individual networking meetings – although hobbled initially by technology – were held after the meeting between senior and early career researchers.

And best of all – more than 40 people participated in a picture contest, contributing stunning images of larval fish or larval fish science.

For more information, speaker bios’s, talk titles, abstracts and even some video please visit the event website lfc44.uconn.edu


Some of our personal favorites among the best larval fish picture submissions

A35---Bartick---Ribbonfish-fb-1-of-1
Mike Bartick | Ribbon fish
A32---Meldonian---Cyclopsetta-fimbriata-7-8-19-9932-final
Irene Middleton | A diver checks out a juvenile flying fish at the Poor Knights Islands in New Zealand
A32---Meldonian---Cyclopsetta-fimbriata-7-8-19-9932-final
Suzan Meldonian | Cyclopsetta fimbriata, photographed in situ along Gulf Stream Current, SE Florida
A25---Parkinson--29354-004-Molidae-A
Winner – Kerryn Parkinson | Mola sp – a larval sunfish collected off New South Wales, Australia.
A23---Monteiro---Tilefish_CNamiki
Gabriel Monteiro | Caulolatilus chrysops larvae cleared and stained. This specimen belongs to ColBIO USP biological collection.
A15---Walsh---larval-Bothus_20170615_photo-by-Har
Harvey Walsh | Bothus larvae sorted at sea from a bongo net tow collected during the summer of 2017 aboard the NOAA Ship Gordon Gunter.
A10---Murray---Pacific-Herring-embryo
Chris Murray | Wild Pacific herring spawn from Skagit Bay, WA (~72 h old). Note the flat edge of the egg where it was adhered to sea grass.
A05---Grande-H.-Acanthurus-coeruleus
Henrique Grande | Post-larval reef fish Acanthurus coeruleus Bloch & Schneider, 1801 collected in 2015 using light traps in the Bay of Tamandaré, Brazil.