Month: October 2016

[Field work] Catching sand lance on Stellwagen Bank

On 27 October 2016, Hannes, Chris and Julie joined researchers from the Stellwagen Bank National Marine Sanctuary (David Wiley, Anne-Marie Runfola, Brad Cabe, Michael Thompson), the USGS (Page Valentine, Dann Blackwood) and the crew of the R/V Auk (Dave Slocum, James Stasinos) to embark on our first of five total sampling missions in this enigmatic marine habitat. Our goal, catching live Northern sand lance, Ammodytes dubius, the so critical forage fish species that is referred to as the “backbone of the sanctuary”, because all kinds of marine predators from whales to tuna to seabirds gather on the bank to feast on them.

Our renewed efforts are part of our recently funded NOAA Regional SeaGrant Project to investigate the effects of ocean warming, acidification and low oxygen on sand lance early life stages.

As before, we first started by deploying a Seaboss sediment grab, which allows our colleagues from the USGS to characterize sediment types in association with the occurrence of sand lance. In addition, however, we brought a small beam trawl along for the first time to find out, whether we could more effectively catch sand lance and then transport them live to our seawater facility at UConn Avery Point. We are happy report that the efforts by all have paid off and that there are now ~ 180 adult ripening sand lance swimming in our tanks. Thanks all, see you again for the second survey in a few weeks!

Check out the video below, made from clips of no less than five different GoPro’s (if you listen carefully, around 2:40 into the clip you’ll hear the singing of some nearby humpback whales):

[New publication] Long-term growth consequences of acidification in Atlantic silversides

October 10th 2016 was a special day for our still young lab here at the University of Connecticut, Today, the ICES Journal of Marine Science published the paper of Chris Murray et al., which is the first of hopefully many publications of our experimental findings originating out of our new laboratory facility here at UConn Avery Point.
Chris and his co-authors report on a large-scale, quantitative rearing experiment on Atlantic silversides eggs, larvae and juveniles under contrasting CO2 conditions that took place between May – September 2015. This novel experiment was designed to address three critical issues lacking in previous ocean acidification research on fish. First, the study spanned several ontogenetic stages. Second, it used very large numbers of individuals to robustly characterize not just potential shifts in mean responses, but also changes in the distribution of length, weight, and condition factor. Third, it provided food at standardized, non-excess levels to prevent that potential metabolic costs of high CO2 exposure could be compensated by survivors simply by eating more food.
Overall the study demonstrated seemingly small but significant growth reductions due to high CO2 and identified a small number of fatty acids that were of significantly different concentrations in high vs. control juveniles.

Distributions of condition factor per 2mm TL interval for juvenile M.menidia reared for 122dph at control (a) and high CO2 conditions (b). Thick and thin black lines correspond to the 10th/90th and 25th/75th percentiles, respectively, while the red line depicts the median. Data below the 10th and above the 90th percentiles are depicted by black dots. Underlying grey bars show relative frequencies for each 2 mm TL class. Black and grey numbers correspond to numbers of individuals measured for both TL and wW, or for TL only, respectively.
Cumulative frequency distributions of (a) total length (TL) and (b) wet weight (wW), in juvenile M. menidia reared for 122 dph at control and high CO2 conditions.

Murray, C.S.*, Fuiman, L., and Baumann, H. (2016)
Consequences of elevated CO2 exposure across multiple life stages in a coastal forage fish.
ICES Journal of Marine Science (published online 10 Oct 2016)

[Opportunity] Summer Undergraduate Research Fund (SURF)

Seasonal dynamics in Atlantic Silverside abundance, spawning, and offspring sensitivity to low pH and oxygen

The Summer Undergraduate Research Fund (SURF) offers a summer stipend of up to $3,500 + $500 research. The Evolutionary Fish Ecology Lab offers a variety of suitable topics for undergraduates to work on.
Deadline for applications is January, 20th 2017.

How to apply: