People

[Research News] F1000 Prime recommends Biology Letters article

Dear Dr Baumann,

Congratulations!

Your article: Robust quantification of fish early life CO2 sensitivities via serial experimentation, Biology Letters, 2018 (DOI: 10.3410/f.734523360.793553721), has been recommended in F1000Prime as being of special significance in its field by F1000 Faculty Member Philip Munday.

You can read Dr Munday’s recommendation here

Munday P: F1000Prime Recommendation of [Baumann H et al., Biol Lett 2018 14(11)]. In F1000Prime, 11 Dec 2018; 10.3410/f.734523360.793553721


Thank you, Phil!

[Lab news] Chris defends his dissertation!

Chris_committee
Chris smiling after his committee congratulated him on his dissertation defense (f.l.t.r: Chris Chamber, Chris Gobler (via Skype), Eric Schultz, Hans Dam, Chris Murray)
6 December 2018. Today, the whole Baumann lab is congratulating Chris Murray today on his great day of defending his PhD. Chris presented the essence of his research on climate change effects on coastal marine fish to a packed audience in the seminar room, fielded an array of questions, and showed his deep knowledge of the subject during the subsequent discussion with his committee.
Well done, Dr. Murray! We are all so very proud of you!

bubbly-chris
The bubbly is opened in the Rankin Lab in true experimenter fashion!
chris-and-chris-rankin
Chris Murray and Chris Chambers in front of the sand lance tank in the Rankin Lab

[Publication] Meta-analysis of silverside CO2 experiments published!

28 November 2018. Hannes, Emma, and Chris are happy to announce that Biology Letters just published our latest study, a meta-analysis of 20 standard CO2 exposure experiments conducted on Atlantic silverside offspring between 2012-2017. All these years of sustained experimental work resulted in the most robustly constrained estimates of overall CO2 effect sizes for a marine organism to date.
The study demonstrated:

  • A general tolerance of Atlantic silverside early life stages to pCO2 levels of ~2,000 µatm
  • A significant overall CO2 induced reduction of embryo and overall survival by -9% and -13%, respectively
  • The seasonal change in early life CO2 sensitivity in this species
  • The value of serial experimentation to detect and robustly estimate CO2 effects in marine organisms

Baumann, H., Cross, E.L., and Murray, C.S. Robust quantification of fish early life CO2 sensitivities via serial experimentation. Biology Letters 14:20180408


Baumann-etal-BiolLett2018---Fig01
This figure shows the summary of early life responses to high CO2 conditions in Atlantic silversides across all experiments conducted between 2012-2017. Effect size was estimated using the log-transformed response ratio (A-D). Error bars are 95% confidence intervals. The responses are considered significant if the confidence interval does not include zero. Panels E-F: seasonal decomposition of response ratios, showing that silverside early life stages are most sensitive to high CO2 at the beginning and end of their spawning season.

[Research news] Sandlance are spawning on Stellwagen Bank again!

15 November 2018. After a stretch of foul weather kept us from going out to Stellwagen Bank last week, this time all the stars aligned for Emma and Mackenzie. Due to their success in catching spawning ripe Northern sandlance, we are now embarking on our third year of CO2 x temperature experiments on this species!


Mackenzie-Blanusa
Here is how Mackenzie Blanusa experienced her first trip to these enigmatic waters:
“This particular sandlance cruise was a day filled with firsts and is definitely a trip to remember. I accompanied Emma, Hannes’ postdoc, up to Scituate the night before the cruise and was given a rundown of what needed to be accomplished. I was a bit overwhelmed at first, because I’ve never dealt with sandlances before and did not know a lot about these fish. Nevertheless, I was eager to learn something new and was ready to help out wherever needed.

The goal of the sandlance cruise was to collect running ripe males and females to do a fertilization via strip spawning. Emma and I were a bit doubtful at first because we got less than 10 sandlance on the first two trolls. However, things got much better by the afternoon, and our most successful trawl caught 147 sand lance. I helped out with the fertilization and deploying the trawl, two things I have never done before. The most exciting part of the day was getting to see humpback whales. Usually they are in the distance but today they were right next to the boat. Everyone on board said that this never happens and it was very unusual so I felt very lucky to have seen whales at such a close proximity.”

Overall, the trip was a huge success and it was very refreshing to see everything go as planned. The only downside to the day was driving back home through a snowstorm. I later found out that there was a 73% fertilization success and we got 27,000 embryos for Emma’s experiment. I am very grateful to have gotten the opportunity to help out on this sampling cruise and am looking forward to doing this again in the future!


Sandlance-Nov2018-03
Emma on the makeshift spawning station for sand lance on board the RV Auk
Sandlance-Nov2018-02
Mackenzie strip-spawning sand lance on the ship

Stellwagen whales
Added perks of doing research on Stellwagen Bank …


Sandlance-Nov2018-04
Exactly 0.5ml of sand lance eggs (~ 600) were distributed into each replicate per treatment
Sandlance-Nov2018-01
Emma and Julie pipetting sand lance eggs

[Lab news] Baumann & Therkildsen lab on a silverside road trip

28 October 2018. Members of the Therkildsen (Nina Therkildsen, Maria Akopyan) and Baumann labs (Hannes Baumann, Callie Concannon) went on a joint road trip together to sample juvenile Atlantic silversides for our NSF project about the genomic underpinnings of local adaptation in the ocean. We targeted again three sites, Morehead City NC, Oregon Inlet NC, and Chincoteague Island VA, sampling silversides via beach seine. The weather was lousy and the work strenuous, but the mood elated, because we got all the fish we needed for subsequent genomic and otolith analyses.
What a great collaboration. Check out some of the pictures from the trip below.

NC-trip-map

NCtrip-Oct2018-CIVA03
NCtrip-Oct2018-CIVA01
NCtrip-Oct2018-CIVA02

NCtrip-Oct2018-OINC01
NCtrip-Oct2018-OINC02
NCtrip-Oct2018-OINC03

NCtrip-Oct2018-MCNC03
NCtrip-Oct2018-MCNC02
NCtrip-Oct2018-MCNC01

NC-trip-beach

[Lab news] Baumann lab participates in first DMS sea course

Seacourse01


12 October 2018. This year, the Department of Marine Sciences at UConn Avery Point has conducted his first graduate course on physical and biological oceanographic methods, which culminated in a two day research cruise aboard the newly stretched R/V Connecticut. The cruise sampled stations from Eastern Long Island Sound all the way out the continental shelf, deploying CTD’s, sediment corers and grabs, as well as zooplankton and nekton nets. Callie and Hannes from the Baumann lab were part of the fun!


Check out some of the action in the youtube clip below.


Seacourse02
f.l.t.r.: Alec Shub, Michael Mathuri, Hannes Baumann, Samantha Siedlecki, James O’Donnell, James DeMayo, Amin Ilia, Callie Concannon, Molly James
Seacourse03


[Lab news] Baumann lab goes sailing!

Stonington, 21 September 2018: On this windy Friday afternoon, Lucas invited the Baumann lab on a little sailing tour on board of his boat, which he also calls home. Thanks to the professional skipper qualities of Lucas and Julie, the rest of us had to just lean back and enjoy the sea and the wind and the company. Thanks to all!

Baumann-lab-sailing_01
From left to right: Chris Murray, Hannes Baumann, Emma Cross, Callie Concannon, Julie Pringle, Lucas Jones

Baumann-lab-sailing_02
Baumann-lab-sailing_05

Baumann-lab-sailing_04
Baumann-lab-sailing_03

[Research news] Live staining of silverside neuromasts at URI

By Emma Cross.

Neuromast01-heli
23 Juli 2018. Yesterday Hannes and Emma took a short road trip to the University of Rhode Island to visit Professor Jacqueline Webb’s lab to learn about in vivo fluorescent imaging.

This technique involves placing live fish in a fluorescent mitrochondrial stain for 5 minutes before imaging different areas of the fish under a dissecting microscope equipped with an epiflourescence light source. This allowed us to visualize small sense organs called neuromasts located in tubular canals in the head, trunk and tail, which form the fish sensory lateral line system used to detect water flows.


We are interested to see if high CO2 conditions affect these neuromasts in the Atlantic silverside, which could impact their critical schooling behaviors.

neuromast-emma-jackie
neuromast-hand

Take a look at some of the stunning images below! Thank you to Jackie and all the lab for a fun-filled day!

neuromast02-heli
neuromast-emma

[New publication] Complex CO2 x temperature effects in Menidia offspring

Chris-Murray
hbpic2
20 July 2018. We are happy to announce that Diversity just published Chris Murray’s paper on complex CO2 x temperature effects in Atlantic silverside offspring. The paper synthesizes 5 large multistressor experiments conducted since 2014, finding evidence for the large CO2 tolerance in this species across a large temperature range.

Congrats, Chris, to the second chapter published!

  • Murray, C.S. and Baumann, H. You better repeat it: complex temperature × CO2 effects in Atlantic silverside offspring revealed by serial experimentation. Diversity 10:69

  • MurrayBaumann-Fig1
    M. menidia. Offspring responses to control (blue), high (red), and extreme (green) CO2 conditions at four temperatures across five CO2 × temperature factorial experiments. Traits include embryo survival (A–E), hatch length (F–I), larval survival (J–N) and larval growth rate (O–R). Individual replicates are represented by small faded circles. Treatment means (±SD) are depicted by large, bold circles and connected by dotted lines. Note: different scales used for hatch length measurements due to differences in sample timing; panels F and G use 1dph length Y axis (left) while panels H and I use hatch length Y axis (right).

    [Lab news] Baumann and Dam labs at the Gordon Research Conference

    GRC2018


    WatervilleValley
    The beautiful venue of the Waterville Valley Hotel in New Hampshire

    OVH-GRCtalk
    Hannes introduced the Ocean Variability Hypothesis

    GRC2018-Phil-HB
    Phil Munday and Hannes chatting along the beautiful hike of Cascade Path
    19 July 2018. Members of the Baumann and Dam labs cherished the opportunity to participate in the Ocean Global Change Biology Gordon Research Conference in Waterville Valley, NH.

    The particularly intimate format of the Gordon Research Conference was wonderfully conducive to listening to groundbreaking science in form of keynote lectures and posters and to network with colleagues from all over the world. While Hannes gave a keynote lecture about experimental progress in assessing fish sensitivity to marine climate change, Chris, Emma, Jimmy and Hans presented their research all throughout the week during the poster sessions. The beautiful setting of the conference in New Hampshire’s White Mountains and the relaxed atmosphere were all contributing to one of the most unique conference experiences all year.


    Talks and posters presented:

    • Baumann H. Using experiments to assess the sensitivity of fish to marine climate change: progress and knowledge gaps. Invited keynote talk.
    • Murray, C.S., Wiley, D., and Baumann H. Sand lance offspring (Ammodytes dubius) show high sensitivity to combined climate stressors. Poster.
    • Cross, E.L., Peck, L., and Harper, E. Brachiopod resilience: thicker shells offset dissolution under future ocean acidification and warming. Poster.
    • Dam, H.G., DeMayo, J.A., Park, G., He, X., Finiguerra, M., Baumann H., and Pespeni, M. Rapid adaptation of a marine copepod to a greenhouse world. Poster.
    • DeMayo, J.A., Park, G., Norton, L., Finiguerra, M., Baumann H., and Dam, H.G. Costs of adaptation to a greenhouse world for the copepod, Acartia tonsa. Poster.

    GRC-posters


    Baumann-Damlab1
    The Baumann & Dam lab at the GRC hike
    BaumannDamlab2

    grc_photo_2018