Ocean Acidification

High CO2 tolerance of Black Sea Bass embryos / larvae – just out!

12 June 2024. We are excited to share that Environmental Biology of Fishes just published our study on the CO2 sensitivity of Black Sea Bass early life stages! The experimental work was part of Max Zavell's PhD-research and required the development of new approaches for obtaining spawning adults, new rearing methods, and new techniques for quantifying hatchlings and feeding larvae.

In the end, our research extends earlier experimental work to show that Black Sea Bass embryos and larvae are surprisingly tolerant to even extreme pCO2 conditions - which means that this species is likely resistant to the direct (!) effects of ocean acidification. Scientifically, this is intriguing because it points to some form of pre-adaptation that adults confer to their offspring in a manner we just don't understand yet.

Congrats, Max, to another chapter of your thesis published!


BSB-ELS-Development-Panel-red
Black Sea Bass early life stages, developing rapidly at 20C

Fig1A-Hatch-Survival
Hatching success of black sea bass embryo exposed to different pCO2 conditions (modified after Zavell & Baumann 2024)

A strong showing at the 47th Larval Fish Conference!

17 May 2024. Members of our Evolutionary Fish Ecology Lab had a blast attending this years 47th Larval Fish Conference in Huron, OH. Hannes, Emma, Max and alumnus Chris Murray (now at WHOI), went on a road trip from Connecticut to Lake Eerie to present and learn about all things larval fish. On Tuesday morning, the conference crowd enjoyed excursion or recreation options, all the while catching up with good old colleagues and making new connections and friends. A particular achievement: each of us presented research on a different fish species; while Hannes showed the first data emerging from his sabbatical research on Chilean silversides, Emma talked about baby California grunion development. Max presented a poster and two talks, the first about CO2 effects on the onset of schooling in Atlantic silversides and a second one one Black Sea Bass overwintering dynamics. Last, Chris Murray gave a fascinating first look into gene expression data from our most recent sand lance CO2 experiment. All around, a strong showing of our lab!
lfc47-banner-bold

Contributions from our lab to the 47th Larval Fish Conference in Huron, OH

  • Baumann, H., Gallardo, A., Gallardo, C., and Urbina, M. 2024. First evidence for countergradient growth variation in the Chilean silverside Odontesthes regia. Oral presentation
  • Siegried, E. and Johnson, D. 2024. Eyes bigger than your stomach: developmental inaccuracy in larval California grunion. Oral presentation.
  • Zavell, M.D., Mouland, M., Barnum, D., Matassa, C., Schultz, E.T., and Baumann, H. 2024. Overwintering dynamics of northern stock Black Sea Bass, Centropristis striata, juveniles. Oral presentation.
  • Zavell, M.D., O'del, J., Mouland, M., Webb, J.F., and Baumann, H. 2024. Ontogeny of larval schooling and effects of ocean acidification in Atlantic Silversides (Menidia menidia). Oral presentation.
  • Murray, C.S., Jones, L., Siegfried, E., Zavell, M.D., Baumann, Z., Wiley, D., Therkildsen, N., Aluru, N., and Baumann, H. 2024. Examining the effect of ocean acidification on hatching enzyme gene expression in Northern sand lance (Ammodytes dubius). Oral presentation.

LFC47-7
Long-time attendees of the LFC happy to meet again (fltr: Pascal Sirois, Dominique Robert, Hannes Baumann, Chris Chambers, Bill Leggett)

LFC47-1
Proud members of the lab at the end of the LFC47

LFC47-2
Extensive fields of water lilies in the Huron River, OH

LFC47-6
A nice break from conference science, kayaking the Huron River

LFC47-4
A very relaxing morning with great weather

NSF awards our collaborative sand lance grant!

 

24 June 2023. We are overjoyed to be able to announce today that NSF's Division of Integrative Organismal Systems has awarded our proposed research to better understand sand lance CO2 sensitivity!

With a sense of pride and humility we will take on this intriguing case, follow it down some rabbit holes, while keeping in mind the big picture. This fall, our collaborative team will begin its renewed work, now on both congeneric sandlance species (Ammodytes dubius, A. americanus).

We already have two talented PhD students recruited to the task, Lucas Jones and Emma Siegfried. With curiosity and anticipation, we look forward to the next years of eco-evolutionary research on some of the most important forage fish species on the Northwest Atlantic Shelf.

FigS2---Embryo-RTH
Earlier work showed that sand lance embryos are unusually sensitive to high CO2


NSF-ORCC (Organismal Response to Climate Change): Collaborative Research: Mechanisms underpinning the unusual, high CO2 sensitivity of sand lances, key forage fishes on the Northwest Atlantic Shelf (#2307813, 2023-2026, $1,050,000)


The research team: Hannes Baumann (lead-PI, UConn), Zofia Baumann (UConn), David Wiley (NOAA), Nina Therkildsen (Cornell), Chris Murray (WHOI), Neel Aluru (WHOI)

*** Why are sand lance so sensitive to future high CO2 conditions in the ocean? ***

Public Award Abstract
Ocean warming and acidification are direct, predictable consequences of man-made climate change with likely vast but still insufficiently understood consequences for marine life.

So far, most tested fish species appear only mildly sensitive to ocean acidification, but sand lances are an exception. Sand lances are small, eel-like, schooling fishes of enormous importance as food for marine fish, seabirds and mammals in temperate to polar ecosystems, and recent research conclusively demonstrated that many sand lance embryos have trouble developing and hatching under predicted future ocean conditions.

This project uses modern experimental and molecular tools to understand exactly WHY sand lance embryos are so unusually sensitive and which genes and enzymes are responsible for this. Genes will also reveal whether some specific genotypes are less sensitive to warming and acidification, which can then be used to predict whether the species could evolve to be more tolerant over time.

Another important objective is to test a closely related sand lance species to find out, whether the high climate sensitivity might be of general concern in this important group of forage fishes. This project combines innovative ecological, evolutionary, and genomic research to help society anticipate looming marine ecosystem changes in the 21st century, while equipping the next generation of scientists with the needed tools and expertise to succeed in the challenges ahead.

The project also creates opportunities for high school students from underprivileged Connecticut schools to accompany the team on sand lance sampling trips to Stellwagen Bank National Marine Sanctuary.

American sand lance (Ammodytes americanus) swimming in surface waters of Wells Harbor, ME in November 2021

Technical Award Abstract
Two recent studies on Northern sand lance (Ammodytes dubius), a key forage fish on offshore sand banks across the Northwest Atlantic shelf (NWA), have robustly demonstrated that predicted future CO2 conditions induce some of the most severe reductions in embryo survival and hatching success seen yet among tested fish species. This project has four objectives for revealing the mechanisms underpinning this unusual, high CO2-sensitivity as well as the ubiquity and genetic basis of this phenomenon.

[1] For the first time, we will rear A. dubius offspring produced from wild spawners to late larval stages at factorial CO2 × temperature conditions to test whether sand lance larvae are as CO2-sensitive as embryos.

[2] For the first time, we will use transcriptomic tools (RNAseq, RT-qPCR) to elucidate mechanisms causing ‘CO2-impaired hatching’, focusing specifically on hatching enzymes, to better understand a newly discovered mortality mechanism due to high CO2 in fishes.

[3] Modern genomic approaches (low-coverage whole genome sequencing; allele frequency shifts, relatedness analyses) will reveal whether high CO2-sensitivity has a genetic basis in sand lance and could therefore evolve.

[4] And for the first time, we will extend CO2 × temperature experiments to a congener, the American sand lance (A. americanus), which provides an important scientific contrast between nearshore vs. offshore species CO2-sensitivities and will yield critical insights whether high CO2-sensitivity is a wider concern within the sand lance family.

Feeling the pulse of Mumford Cove

23 March 2023. For almost 8 years now, the Evolutionary Fish Ecology Lab has conducted research in nearby Mumford Cove, a small, eelgrass covered embayment on eastern Long Island Sound. Using a set of battery-powered probes we have continuously measured temperature, pH, oxygen, salinity, and depth in 30 min intervals in the Cove - almost 120,000 times. This ongoing effort is not funded by any grant or institution; instead, it has been sustained over all these years by the firm belief in the prescient, if undervalued societal service of monitoring, an activity without short-term reward but important long-term benefits in understanding how ecosystems change on short and long time-scales. To commemorate the effort, we simply thought that it is time to show you some data, some pictures, and draw some early, cautious conclusions about the very interesting case of Mumford Cove. Have a look!

Fig01---Mumford-Cove-sketch
Fig.1: Schematic section of the upper part of Mumford Cove, showing the deployed probe (blue) between the bottom anchor (grey) and a subsurface float (orange), marked by a surface float (white). The probe sits in the deepest part of the Cove (Channel), at constant 50 cm distance to the bottom, but variable water level above (red histogram).

"Future generations will certainly have better theories, tools, models, and computers, but they will still depend on the data and measurements taken here and now."

Aerial01
Aerial view of Mumford Cove (Picture: Jamie Vaudrey)

John and Hannes travel to Bermuda to install a new CO2 system

BIOS-Explorer
The Bermuda Institute of Ocean Sciences (BIOS) with its flagship the R/V 'Atlantic Explorer' in May 2022

John-and-Hannes-dockyard
John Hamilton (right) and Hannes Baumann (left), the UConn team for the BIOS CO2 project

29 May 2022. When in a few months researchers and students at the Bermuda Institute of Ocean Science (BIOS) begin using their new outdoor mesocosm facility, they can now manipulate and control the CO2 levels in as many of 9 flow-through basins. The important new capacity of the system will allow realistic ocean warming and acidification experiments and has been the product of a wonderful collaboration between BIOS researcher Dr. Yvonne Sawall and our UConn Marine Sciences team consisting of John Hamilton and Hannes Baumann.

The newly developed system shares some of the design ideas with ALFiRiS, the factorial rearing system we developed and used over the past years at UConn's Rankin Seawater Lab. For example, we again developed and installed a central pH measurement hub that sequentially collects water samples via pumps from each of 12 independent basins, which is advantageous, because it only relies on a single, high-end pH sensor, therefore making measurements always comparable. Similarly, we are using LabView software (National Instruments) to switch pumps on and off and log, display, and graph the pH conditions in real time for researchers to have confidence in their chosen environmental parameters.

StGeorgeBermuda
A view over Mullet Bay from Slip Point Lane in St.George/Bermuda

mesocosms
A downward view of BIOS' outdoor mesocosm facility, still in the middle of the major refurbishment

While most of the planning and design work was done remotely via frequent online meetings, Hannes and John worked with Yvonne during the past week at the BIOS station on installing and testing the systems major components. Working mostly out in the open under a warm and clear Bermudan sky was a particular treat of this assignment. Big shout-out, too, to facilities manager Kevin Hollis for his tireless onsite help!

Despite setbacks in form of supply chain delays and an unfortunate last moment COVID infection preventing team member Lucas Jones from traveling to Bermuda, soon the new outdoor mesocosm facility at BIOS will become operational and allow new and advanced kinds of experimental research on global change biology.


Staying at the Mary and James Buttler suite at BIOS was a particular treat

ElectronicsBox
The electronic box designed & assembled by John controls the sampling pumps

johnYvonneRoderick
On May 24th, John is explaining the workings of the software to Yvonne and Roderick

YvonneHeaderTankTest
On May 26, Yvonne measures pH in a mock-up of the CO2 header tanks for the mesocosm facility

YvonneJohnDock
On May 28, our work is done and we enjoy the evening on the dock of Yvonne's place in St.George

Winky-Queen-of-BIOS01
'Winky' is the queen of BIOS

RVAtlanticExplorer
The R/V Atlantic Explorer is the flagship of BIOS and the main operation platform for the BATS time series

johnTree
John takes a picture of a Royal Poinciana (Delonix regia, Fabacea, Caesalpinioideae), a particularly stunning tree at the BIOS and all over Bermuda

Hannes gives DMS Friday seminar on sand lance ecology

4 March 2022. Hannes was the invited speaker at today's Friday seminar of the Department of Marine Sciences. His talk gave an overview of the research highlights of our multi-disciplinary and multi-institutional efforts to better understand basic ecological facts, population connectivity & structure, and the unusually high CO2-sensitivity of sand lance embryos. The remotely given presentation was attended by 62 people, some of which listened in from as far away as Norway!

The talk was recorded and can be accessed via the public link below.


The unusual ecology and climate sensitivity of sand lance, a key forage fish on the Northwest-Atlantic Shelf

No matter how you look at these small, slender-bodied fishes that at times live buried in sediment or emerge as dense pelagic schools, northern sand lance (Ammodytes dubius) easily awe even the most hard-to-impress scientist or naturalist. Their unusual behavior, patchy occurrence, and reproductive timing are paralleled by their extraordinary importance as forage fish that sustain well-known hotspots of iconic predators (cod, tuna, sharks, seabirds, whales) all across the Northwest Atlantic shelf. And yet, despite their recognized role as the ‘backbone’ of many shelf ecosystems, we still don’t understand many basic aspects of sand lance ecology, population structure and their vulnerability to manmade climate change. Over the past years, our lab has been working alongside other US and Canadian research groups on multiple sand lance projects that have produced stunning new insights into these enigmatic fish. This seminar will outline some of the highlights. We discovered that the seasonal growth of these fish relies heavily on the lipid-rich copepod Calanus finmarchicus and showed that after a dormancy period in summer they spawn on Stellwagen Bank for just a brief period at the end of fall. To resolve questions of connectivity between sand lance areas, we performed large-scale Lagrangian drift simulations that suggested areas of high, low and negligible retention of sand lance offspring and showed overlaps with planned offshore wind lease areas. A large collaborative effort succeeded in obtaining specimens from across the entire distributional range (Greenland to Mid-Atlantic Bight), and subsequent whole genome sequencing newly revealed a stark genomic differentiation between northern and southern population clusters. Last, we performed multiple years of rearing experiments on embryos that consistently showed an unusual sensitivity of sand lance to future, high CO2 oceans. When coupled with regional, end-of-century pCO2 projections we estimate that rising CO2 levels alone could reduce sand lance hatching success to 71% in 2100 relative to today. Warming, acidification, and habitat exploitation therefore emerge as key factors lining up against the future productivity of this forage fish, which is so critically important across Northwest-Atlantic shelf ecosystems.


Video: A November day on Stellwagen Bank

ICES Journal of Marine Science publishes long-term fecundity study!

Concannon-etal-for-website

2 November 2021. We are happy report that the ICES Journal of Marine Science just published the last major experimental paper on Atlantic silverside CO2-sensitivity from our lab. Callie Concannon and co-authors report on two complementary, long-term rearing trials in 2015/16 and 2018/19, where silverside juveniles or newly fertilized embryos were reared under contrasting temperature and CO2 conditions to maturity. This revealed negative effects of high CO2 conditions on female fecundity, but only at the warm, not the cold temperature treatments (Fig. below). Our study and its data are novel, because they were generated by the first whole-life CO2 rearing experiment of a fish and are the first empirical fecundity effects shown for a broadcast-spawning fish species.

The paper is also special to us, because its publication marks the erstwhile conclusion of our yearlong, NSF-funded efforts (OCE#1536165) to understand the CO2 sensitivity and its mechanisms in this important forage fish and long-standing model in fish ecology and evolution. The project ran from 2015 - 2020, produced 15 publications, 2 book chapters, and over 40 presentations, while furthering the careers of a post-doc, a PhD student, 5 Master students and over 10 undergraduates.


Our sandlance work featured in the CapeCodFishermen

Reposted from TheCapeCodFishermen, April 28th 2021

By David N. Wiley

Bluefin tuna and striped bass crash through the waves. Seabirds wheel overhead and plunge into the water. Gape-mouthed whales rise from below. Schools of cod and dogfish hide below the surface.

While the convergence of such diverse sea life might seem accidental, those in the know thank a small, slender fish called a sand eel for the bonanza.

Also known as sand lance, these three-to-six inch forage fish are a main food source for many of the top predators in the Gulf of Maine and on Georges Bank, including some of the most commercially important species.

As their name implies, sand lance are tied to sand habitat, but not just any sand will do. To avoid predators, sand lance spend most of the night and parts of the day buried. When disturbed, they rocket out of the bottom, then dive head first and at full speed back into the sand.

As a result, their sand of choice has to be coarse enough to hold oxygen for the fish to “breathe” while buried, but soft enough to allow high-speed body penetration. One of the reasons Cape Cod is their Mecca is a band of perfect sand stretching from Stellwagen Bank along the backside of Cape Cod, past Chatham and up through Georges Bank. Whether you are a fisherman, whale watcher or seabird enthusiast, it’s this band of sand, and the sand lance that inhabit it, that makes the Cape special.

Sand and sand lance are the backbone of Stellwagen Bank National Marine Sanctuary, responsible for it being one of the top places in the United States for viewing marine life, and a centuries old, highly productive fishing ground. Yet while fishermen appreciate the importance of sand lance, little is known about their biology and most of the world does not know they exist.

To remedy the situation, a team of researchers led by scientists from Stellwagen Bank National Marine Sanctuary with partners from Boston University, Center for Coastal Studies, University of Connecticut, U.S. Geological Survey and Woods Hole Oceanographic Institution have been studying the forage fish to determine its importance and unlock some of its secrets.

One of the project’s first goals was to identify the sand lance spawning season. Using a specially designed and permitted small-mesh trawl, fished from Steve Welch’s F/V Mystic or NOAA’s R/V Auk, the team captured and examined sand lance. Thought to spawn from late fall through winter, several years of work demonstrated that sand lance on Stellwagen Bank spawn in a very narrow window at the end of November. Eggs are deposited on the seafloor and hatch after approximately six weeks.

Then things get interesting. Once hatched, sand lance are tiny, free-floating larvae for two to three months. Given this long free-floating period and the currents flowing over Stellwagen Bank, many sand lance born on the bank cannot stay there. So where do they come from and where do their offspring go?

To answer this question, the team used hydrographic modeling to backtrack to where free floating particles (like larval sand lance) would have originated prior to their sand settlement in March or April, and where drifting particles would end up two or three months after hatching.

It appears that larval sand lance settling on Stellwagen originate off the coast of Maine; years of highest sand lance abundance correspond to conditions that would have transported additional larval sand lance from as far north as Nova Scotia. The same modeling indicated that larval sand lance originating on Stellwagen Bank transport south to the Great South Channel and Nantucket Shoals (but not Georges Bank). In some years, currents moved them as far as New Jersey.

This is just another example of the interconnected world that creates a productive marine environment. Since few sand lance in the study lived past three years, the dependence on shifting currents to populate the bank could be one thing responsible for boom and bust years typical of sand lance abundance. The team is currently examining genetics of sand lance taken from throughout the Gulf of Maine, the mid-Atlantic, and eastern Canada, to gain additional insight into population structure.

Do boom-bust years influence the distribution and abundance of predators? The team investigated the association of sand lance with humpback whales and great shearwater seabirds by placing satellite tags on both species to track their movements.

Throughout the Gulf of Maine, tracking revealed that both species spend the vast majority of their time over sand lance habitat, and DNA from fecal shearwater samples showed sand lance to be the bird’s main prey. Surveys in Stellwagen also demonstrated a high co-occurrence of sand lance, humpback whales and great shearwaters.

Sand lance feed primarily from February to July, mostly on Calanus finmarchicus copepods. They stop feeding from August through October, with low levels of feeding from the end of November to January. Body growth and fat content show similar trends, with length and fat stores increasing from February to July. After July, the fish retreat to bury in the sandy bottom, conserving energy for spawning.

The team then turned its attention to the future of the valuable fish, something of extreme importance to fishermen. Ripe fish captured in November were strip-spawned on board the boats and transported to Connecticut, where eggs and larvae were raised in special tanks that allowed temperature and acidity to be manipulated to mimic future ocean conditions under climate change. Increased temperature and acidity had a dramatic negative impact on larval survival. According to Dr. Hannes Baumann, whose lab led the work, sand lance may be unusually sensitive to ocean acidification.

The future of sand lance was also a focus of team members Joel Llopiz and Justin Suca from Woods Hole Oceanographic Institution. They came to some worrisome conclusions.

The abundance of tiny C. finmarchicus copepods directly influences sand lance health: Abundant C. finmarchicus led to good parental condition and high reproductive success, while low numbers resulted in poor parental condition and poor reproductive success. Scientists have suggested climate change scenarios in the Gulf of Maine will lead to reduced abundance of this critical copepod resource. Adding to the problem was their finding that warm slope water coming through the Northeast Channel north of Georges Bank led to the death of overwintering reproductive adults.

With the Gulf of Maine warming faster than 99 percent of the world’s oceans, there is concern about the future of sand lance and its potential impact to the productivity of the Gulf of Maine, Georges Bank and other areas. While states with fisheries and other marine resources supported by sand lance cannot solve climate change issues, they can work to make sand lance more resilient to climate change. One way is to eliminate as many non-climate stressors as possible.

For example, in 2020 Massachusetts promulgated a rule limiting daily sand lance landings to 200 pounds. Rhode Island followed suit in 2021. These rules were designed to discourage the development of a commercial fishery for the species, such as the huge industrial fishery in Europe’s North Sea.

Since a commercial sand lance fishery does not currently exist here, adopting this rule by other states would be an easy, proactive way to make our waters, and the people who depend on them, more resistant to climate change disruption.

(Dr. David N. Wiley is the Research Ecologist for Stellwagen Bank National Marine Santuary. Funding for the project was provided by the Bureau of Ocean Energy Management, The Volgenau Foundation, Northeast and Woods Hole Sea Grant, International Fund for Animal Welfare, Stellwagen Bank National Marine Sanctuary and the National Marine Sanctuary Foundation. Dan Blackwood, Dr. Gavin Fay, Peter Hong, Dr. Les Kaufmann, Kevin Powers, Dr. Jooke Robbins, Dr. Tammy Silva, Mike Thompson, and Dr. Page Valentine contributed to the study)

Baumann-sandlance-470x504

‘Hooked on OA’ – Hannes talks about fish CO2 sensitivity to recreational anglers

25 February 2021. The Mid-Atlantic Ocean Acidification Network (MACAN) organized a four-part webinar series on Ocean Acidification geared specifically towards recreational anglers and shellfish collectors in the Mid-Atlantic region. The series is called “Hooked on OA” and invited Hannes on this February Thursday to explain the state of OA science particularly for fishes. A big thanks to the organizers and the more than 50 people who participated in this webinar.

HookedonOA


If you missed it and are still interested, you can watch the Zoom webinar here:

JEB publishes paper on metabolic effects of high CO2 in silverside embryos! [New publication]

19 November 2020. We are happy to announce that the Journal of Experimental Biology just published the latest paper on CO2 effects in the early life stages of Atlantic silversides! For her PhD research at Stony Brook University, Teresa meticulously measured oxygen consumption in developing silverside embryos and newly hatched larvae exposed to contrasting oxygen and CO2 conditions throughout multiple experiments in 2017 and 2018. Her work shows that the metabolism of embryos but not larvae is sensitive to elevated CO2 conditions, leading to higher metabolic rates at normoxic levels, but reduced metabolic rates under low oxygen conditions, compared to controls. These basic empirical data confirm the emerging picture that CO2 effects in marine fish manifest largely if at all during early ontogeny, i.e., during the embryo stages. Well done, Teresa, and congratulations to your first lead-author paper!
Schwemmer-etal
Conceptual diagram of the relationship between PO2 and RMR of M. menidia embryos in ambient and elevated PCO2. Hypothesized shifts in the relationship between embryonic RMR and PO2 are shown for elevated (orange) versus ambient (blue) PCO2. Our results (measured at the PO2 levels marked by black dots) suggest that PCO2 can influence both the critical oxygen partial pressure (Pcrit, gray lines) and the oxygen-independent RMR. At higher PO2 levels, RMR increases with PCO2, potentially owing to increased metabolic demand. As PO2 decreases, embryonic RMR reaches Pcrit and becomes oxygen dependent at a higher PO2 level in acidified than in ambient PCO2 conditions. Low intracellular red blood cell pH caused by high PCO2 can be expected to reduce hemoglobin–O2 affinity (Bohr effect) and make embryonic RMR less hypoxia resistant, which could manifest as an increase in Pcrit for embryos in elevated PCO2.