18 December 2019. Hannes and Lucas just returned from a spontaneous road trip to visit our good friends and collaborators at the University of Quebec in Rimouski (UQAR), Canada. We drove for over 10 hours (one-way) through snowstorms and icy voids to meet with Prof. Dominique Robert, who had collected sand lance samples from the Gulf of St. Lawrence and from Nova Scotia to be included in our new genomic study on the population connectivity of this species. Hannes gave a talk about our sand lance work and we saw a new institute in a new place, while frantically trying to stay warm amidst the brutal cold. Seeing the St. Lawrence in its icy, majestic beauty was a truly amazing experience.
Afterwards, we drove back through Maine and then repeated the fin-clipping of samples in Scituate at the Stellwagen Bank National Marine Sanctuary office, so we now have almost all samples in hand to start the DNA extraction and sequencing.
We are excited for the next steps!
Sand lance samples to be included in the genomic study
Rimouski on the south shore of the mighty and icy St. Lawrence River on 12/13/19
Lucas and Hannes listened to Corinne Burns talking about her PhD research at UQAR on 16 Dec 2019
Hannes gave a talk about sand lance research at UConn
The icy beauty of the St. Lawrence River
Sun glistening on the ice on the banks of the St. Lawrence River on 16 Dec 2019
Snow storm on the I91 in Vermont on 15 Dec 2019
Driving back through Maine on 17 Dec 2019 ... 6h of snowstorm
Sand lance sample thawing to be fin-clipped
Hannes and Lucas fin-clipping specimens in the Stellwagen Bank NMS office in Scituate on 18 Dec 2019
12 December 2019. We are happy to announce that Marine Ecology Progress Series just published our latest paper on Atlantic silversides, but this time not an experimental but a field study! During her time in our lab, Julie Pringle investigated the otolith microstructure of young-of-year silversides, finding intriguing patterns about differential growth in males and females that likely result in sex-selective survival during their growing season. Congratulations, Julie, well done!
“We examined the utility of otolith microstructure analysis in young-of-year (YoY) Atlantic silversides Menidia menidia, an important annual forage fish species along the North American Atlantic coast. We first compared the known hatch window of a local population (Long Island Sound, USA) to otolith-derived hatch distributions, finding that YoY collected in October were reliably aged whereas survivors from November and December were progressively under- aged, likely due to the onset of winter ring formation. In all collections, males outnumbered fe- males, and both sexes had bimodal size distributions. However, while small and large females were almost evenly represented (~60 and ~40%, respectively), over 94% of all males belonged to the small size group. We then examined increment widths as proxies for somatic growth, which suggested that bimodal size distributions resulted from 2 distinct slow- and fast-growing YoY phe- notypes. Length back-calculations of October YoY confirmed this, because fast- and slow-growing phenotypes arose within common bi-weekly hatch intervals. We concluded that the partial sexual size dimorphism in this population resulted largely from sex-specific growth differences and not primarily from earlier female than male hatch dates, as predicted by the well-studied phenome- non of temperature-dependent sex determination (TSD) in this species. Furthermore, observed sex ratios were considerably less male-biased than reconstructed thermal histories and published laboratory TSD values predicted. Assuming that selective mortality is generally biased against slower growing individuals, this process would predominantly remove male silversides from the population and explain the more balanced sex ratios at the end of the growing season.”
9 December 2019. During the COP25 summit in Madrid, the International Union for Conservation of Nature (IUCN) released its latest comprehensive report titled “Ocean deoxygenation: everyone’s problem” that compiles the current evidence for the ongoing, man-made decline in the oceans oxygen levels. The 588 page, 11 chapter wake-up call to these detrimental changes was produced by leading experts in the field. We are happy to announce that Hannes is one of the many authors of this document, co-authoring chapter 6 “Multiple stressors – forces that combine to worsen deoxygenation and its effects“.
From the executive summary:
“The equilibrium state of the ocean-atmosphere system has been perturbed these last few decades with the ocean becoming a source of oxygen for the atmosphere even though its oxygen inventory is only ~0.6% of that of the atmosphere. Different analyses conclude that the global ocean oxygen content has decreased by 1-2% since the middle of the 20th century. Global warming is expected to have contributed to this decrease, directly because the solubility of oxygen in warmer waters decreases, and indirectly through changes in the physical and biogeochemical dynamics.”
From the summary of chapter 6:
Human activities have altered not only the oxygen content of the coastal and open ocean, but also a variety of other physical, chemical and biological conditions that can have negative effects on physiological and ecological processes. As a result, marine systems are under intense and increasing pressure from multiple stressors.
The combined effects of ‘stressors’ can be greater than, less than, or different from the sum of each stressor alone, and there are large uncertainties surrounding their combined effects.
Warming, acidification, disease, and fisheries mortality are important common stressors that can have negative effects in combination with low oxygen.
Warming, deoxygenation, and acidification commonly co-occur because they share common causes. Increasing carbon dioxide (CO2) emissions simultaneously warm, deoxygenate, and acidify marine systems, and nutrient pollution increases the severity of deoxygenation and acidification.
A better understanding of the effects of multiple stressors on ocean ecosystems should improve the development of effective strategies to reduce the problem of deoxygenation and aid in identifying adaptive strategies to protect species and processes threatened by oxygen decline.
3 December 2019. We are happy and proud to share that Scientific Reports has published our latest research on the effects of fluctuating CO2 × O2 environments on the early life stages of Atlantic Silversides. The paper synthesizes findings of two years and four separate experiments – all conducted in our automated larval fish rearing system – to answer the question how current and future diel and tidal fluctuations in CO2 and O2 affect the survival and growth of silverside embryos and larvae.
The paper is a great demonstration of the vast capabilities of our system to simulate non-static conditions, which is a frontier in climate change research. Congrats to Emma Cross for pulling all the complex data together!
“Static low DO conditions severely decreased embryo survival, larval survival, time to 50% hatch, size at hatch and post-larval growth rates. Static elevated pco2 did not affect most response traits, however, a synergistic negative effect did occur on embryo survival under hypoxic conditions (3.0 mg L−1). Cycling CO2 × DO, however, reduced these negative effects of static conditions on all response traits with the magnitude of fluctuations influencing the extent of this reduction. This indicates that fluctuations in pco2 and DO may benefit coastal organisms by providing periodic physiological refuge from stressful conditions, which could promote species adaptability to climate change.”
The source data for this publication are openly available (and citable) from the BCO-DMO database. Head to Products -> Research Data to access them!