New Publications

[New publication] Long-term growth consequences of acidification in Atlantic silversides

October 10th 2016 was a special day for our still young lab here at the University of Connecticut, Today, the ICES Journal of Marine Science published the paper of Chris Murray et al., which is the first of hopefully many publications of our experimental findings originating out of our new laboratory facility here at UConn Avery Point.
Chris and his co-authors report on a large-scale, quantitative rearing experiment on Atlantic silversides eggs, larvae and juveniles under contrasting CO2 conditions that took place between May – September 2015. This novel experiment was designed to address three critical issues lacking in previous ocean acidification research on fish. First, the study spanned several ontogenetic stages. Second, it used very large numbers of individuals to robustly characterize not just potential shifts in mean responses, but also changes in the distribution of length, weight, and condition factor. Third, it provided food at standardized, non-excess levels to prevent that potential metabolic costs of high CO2 exposure could be compensated by survivors simply by eating more food.
Overall the study demonstrated seemingly small but significant growth reductions due to high CO2 and identified a small number of fatty acids that were of significantly different concentrations in high vs. control juveniles.

murray-etal-ijms2016_fig3
Distributions of condition factor per 2mm TL interval for juvenile M.menidia reared for 122dph at control (a) and high CO2 conditions (b). Thick and thin black lines correspond to the 10th/90th and 25th/75th percentiles, respectively, while the red line depicts the median. Data below the 10th and above the 90th percentiles are depicted by black dots. Underlying grey bars show relative frequencies for each 2 mm TL class. Black and grey numbers correspond to numbers of individuals measured for both TL and wW, or for TL only, respectively.
murray-etal-ijms2016_fig4
Cumulative frequency distributions of (a) total length (TL) and (b) wet weight (wW), in juvenile M. menidia reared for 122 dph at control and high CO2 conditions.


Murray, C.S.*, Fuiman, L., and Baumann, H. (2016)
Consequences of elevated CO2 exposure across multiple life stages in a coastal forage fish.
ICES Journal of Marine Science (published online 10 Oct 2016)

[New publication] Biology Letters publishes CO2 x Hypoxia review

Gobler & Baumann’s review provides a good overview over the nascent field of multi-stressor acidification and hypoxia work. A first part firmly establishes that virtually all hypoxic zones in the ocean are also acidified, given that metabolic processes (i.e., respiration) consume oxygen and release CO2 into the environment. In a second part, the sparse emerging evidence for multistressor effects of low pH (high CO2) and low oxygen are reviewed, showing that while the majority of effects are additively negative, every study so far has also found synergistically negative effects of combined stressors in at least one trait.

This invited review was published Open Access.


Gobler, C.J. and Baumann, H. (2016)
Hypoxia and acidification in ocean ecosystems: Coupled dynamics and effects on marine life.
Biology Letters 12:20150976


Figure2---phxDO-examples
Examples for synergistic negative effects of low DO and low pH (high CO2) on different traits and marine taxa. (a) Synergistic decrease in respiration rate in small and big sea urchins [27]; (b) growth rate of juvenile quahog was unaffected by low DO or low pH individually, but decreased under combined stressor conditions [23]; (c) survival of Atlantic silverside larvae to 10 dph. Survival was robust against low pH and sensitive to low DO, but decreased synergistically under combined stressors (green arrow, [22]); (d) representation of Po ̈rtners [25] ‘Oxygen- and capacity-limited thermal tolerance’ framework, adapted to the multiple stressor scenario of acidification and hypoxia.

Abstract

There is increasing recognition that low dissolved oxygen (DO) and low pH conditions co-occur in many coastal and open ocean environments. Within temperate ecosystems, these conditions not only develop seasonally as temperatures rise and metabolic rates accelerate, but can also display strong diurnal variability, especially in shallow systems where photosynthetic rates ameliorate hypoxia and acidification by day. Despite the widespread, global co-occurrence of low pH and low DO and the likelihood that these conditions may negatively impact marine life, very few studies have actually assessed the extent to which the combination of both stressors elicits additive, synergistic or antagonistic effects in marine organisms. We review the evidence from published factorial experiments that used static and/or fluctuating pH and DO levels to examine different traits (e.g. survival, growth, metabolism), life stages and species across a broad taxonomic spectrum. Additive negative effects of combined low pH and low DO appear to be most common; however, synergistic negative effects have also been observed. Neither the occurrence nor the strength of these synergistic impacts is currently predictable, and there- fore, the true threat of concurrent acidification and hypoxia to marine food webs and fisheries is still not fully understood. Addressing this knowledge gap will require an expansion of multi-stressor approaches in experimental and field studies, and the development of a predictive framework. In consider- ation of marine policy, we note that DO criteria in coastal waters have been developed without consideration of concurrent pH levels. Given the per- sistence of concurrent low pH–low DO conditions in estuaries and the increased mortality experienced by fish and bivalves under concurrent acidifi- cation and hypoxia compared with hypoxia alone, we conclude that such DO criteria may leave coastal fisheries more vulnerable to population reductions than previously anticipated.

[e-lecture] Limnology & Oceanography publishes e-lecture on multistressors!

electure cover

A suite of parallel anthropogenic changes affects contemporary marine ecosystems. Excessive carbon dioxide (CO2) pollution results in warmer, more acidic oceans with lower dissolved oxygen (DO) levels, meanwhile the emission of reactive nitrogen/phosphorus results in eutrophication, excessive microbial degradation and thus metabolic hypoxia and acidification. Despite decades of empirical research how each individual stressor of the ‘climate-change syndrome’ (i.e., temperature, CO2, DO) affects the fitness of marine organisms, we still know little about the combined effects of these stressors. This lecture gives an overview over the nascent field of multi-stressor approaches evaluating the climate sensitivity of marine organisms across taxa. In most studied cases, combined effects of these stressors exceeded those observed individually. Effects of combined warming, acidification, and deoxygenation have mostly been additive (no stressor interaction) or synergistically negative (stressor interaction). The occurrence and strength of synergistic stressor interactions in some species, life history stages, and traits comprises a vexing challenge but hints at potentially greater sensitivities of organisms to marine climate change than previously recognized. This lecture is intended for post-secondary students, providing them with illustrated examples from the most resent literature, while aiding in communicating the urgent need for empirical data from multi-stressor approaches.


Baumann, H. (2016)
Combined effects of ocean acidification, warming, and hypoxia on marine organisms.
Limnology and Oceanography e-Lectures 6:1-43

[New Publication] Species or ecotype? The curious case of the Key silverside Menidia conchorum

What constitutes a species …

…in the true sense has kept biologist’s head scratching for quite some time, and matters have only gotten more complex since the thunderous advent of genetic methods. Yet the distinction between a species and – say – an ecotype of a species is more than just academic quibble.

In the case of the key silverside, Menidia conchorum, a species that is only found in the hypersaline ponds on the Florida Keys, it’s quite literally an existential question. So far, the protocols and steps of protection apply only in cases of threatened species, which is perhaps something that ought to change.

O’Leary et al. went down to the Florida Keys and sampled the silversides in order to compare them morphologically and genetically to the ‘parent’ species, the tidewater silverside Menidia peninsulae. Their findings show that key silversides are distinct, but not quite their own species yet. In addition, the study revealed the large amount of inbreeding and genetic drift that is happening in each of these small hypersaline ponds.

The paper concludes that although ‘only’ an ecotype, the key silverside is threatened by loss of habitat and therefore still needs our protection!

O'Leary et al. BMS2016
Depiction of morphometric landmarks (upper left) and distinguishing shapes (lower left) between tidewater and key silverside (M. peninsula & M. conchorum). Key silversides are an ecotype that can only be found in hypersaline ponds on the Florida Keys (right: lead and co-authors seining).

O’Leary, S.J., Martinez, C.M., Baumann, H., Abercrombie, D.L., Poulakis, G.R., Murray, C.H., Feldheim, K.A., Chapman, D.D. (2016)
Population genetics and geometric morphometrics of the Key silverside, Menidia conchorum, a marine fish in a highly fragmented inland habitat.
Bulletin of Marine Science 92:33-50

[Publication] Growth and mortality in coastal populations of Winter Flounder: implications for recovery of a depleted population

This study by Yencho et al. examined growth, mortality, and settlement distributions of juvenile Winter Flounder Pseudopleuronectes americanus in two bays of Long Island, New York, to better understand localized population dynamics of a species experiencing a protracted population decline. They found that settlement distributions had multiple peaks (cohorts) occurring between March and late July in 2007 and between February and May in 2008. Otolith-based growth rate was significantly higher for Port Jefferson Harbor during 2007 than for all other year × location combinations. Together with previous research the finding of multiple spawning cohorts in Long Island Winter Flounder suggests a degree of isolation, and local management will be needed to support healthy populations.
Winter flounder

Yencho, M.A, Jordaan, A., Cerrato, R.M., Baumann, H., and Frisk, M.G. (2015) Growth and mortality in coastal populations of Winter Flounder: implications for recovery of a depleted population.
Marine and Coastal Fisheries 7: 246-259.

[Publication] Comparing different growth proxies in young juvenile sprat

Reliable estimates of short- and longer-term in situ growth and condition of organisms are critical if one hopes to understand how the environment regulates survival. This laboratory study reports the first comparison of somatic- (K), biochemical- (RNA–DNA ratio, RD) and otolith- (increment widths, OIW) based indices of condition of a young juvenile fish. It found that RNA:DNA ratios react 2x faster to growth changes due to changes in feeding level than otolith increment widths, while condition factor was the most variable proxy.
Peck et al study

Peck, M. A., H. Baumann, C. Clemmesen, J. P. Herrmann, M. Moyano, and A. Temming 2015. Calibrating and comparing somatic-, nucleic acid-, and otolith-based indicators of growth and condition in young juvenile European sprat (Sprattus sprattus). Journal of Experimental Marine Biology and Ecology 471:217-228.

[New Publication] Combining otolith microstructure and trace element analyses in Pacific bluefin tuna

A new study published in the ICES Journal of Marine Science suggests that analyzing the trace elements incorporated into the otoliths of bluefin tuna may allow inferring the arrival of juvenile fish in the California Current Ecosystem

Juvenile Pacific bluefin tuna (PBT, Thunnus orientalis) are known to migrate from western Pacific spawning grounds to their eastern Pacific nursery grounds in the California Current Large Marine Ecosystem, but the timing, durations, and fraction of the population that makes these migrations need to be better understood for improved management. This new study published in the ICES Journal of Marine Science suggests that analyzing the trace elemental composition of bluefin tuna otoliths may divulge the time of arrival of the juvenile fish on the Californian Shelf. Scientists from the University of Connecticut, Stony Brook University, Texas A&M, as well as from NOAA collaborated in this effort, hoping to further develop this method to better inform managers in the future.

Citation
Baumann, H., Wells, R.J.D., Rooker, J.R., Baumann, Z.A., Madigan, D.J., Dewar, H., Snodgrass, O.E., and Fisher, N.S. (2015) Combining otolith microstructure and trace elemental analyses to infer the arrival of Pacific bluefin tuna juveniles in the California Current Ecosystem. ICES Journal of Marine Science 72:2128-2138.
Free PDF and HTML access

[Publication] The combined effects of low pH and low oxygen on early life stages of three forage fish

New experiments suggest  both additive and synergistic negative effects of combined low pH and low oxygen on the early life stages of three common forage fish
New experiments suggest both additive and synergistic negative effects of combined low pH and low oxygen on the early life stages of three common forage fish

Coastal habitats often experience large diel to seasonal fluctuations in both pH and dissolved oxygen (DO), because ecosystem metabolism consumes oxygen while producing CO2. Hence, the two factors really represent two sides of the same coin. Decades of research have focused on hypoxia or acidification; therefore, the combined effects of these two stressors is still poorly understood. Master student Elizabeth Depasquale and co-authors tested the sensitivity to low pH and low DO in offspring of three forage fish species that are common in nearshore New England habitats: Inland silverside (Menidia beryllina), Atlantic silverside (M. menidia), and sheepshead minnow (Cyprinodon variegatus). The results show that pH and oxygen mostly have additive negative effects, but in a few cases also synergistically negative effects (Fig.1). The latter shows that multistressor experiments are important tools in assessing the impacts of multiple changes on coastal organisms.

Depasquale, E.*, Baumann, H., and Gobler, C.J. (2015) Variation in early life stage vulnerability among Northwest Atlantic estuarine forage fish to ocean acidification and low oxygen. Marine Ecology Progress Series 523: 145–156 http://dx.doi.org/10.3354/meps11142
Schematic response shapes illustrating the expected form of effect interaction between pH and oxygen on different early life history (ELH) traits
Schematic response shapes illustrating the expected form of effect interaction between pH and oxygen on different early life history (ELH) traits

[Press release] Evolving to cope with Climate Change

Publication of Malvezzi et al. Evolutionary Applications (2015) “A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification”

Atlantic silversides Menidia menidia

Originally posted on UConn Today, by Tim Miller

Over the next two centuries, climate change is likely to impact everything from industrial agriculture to the shape of our coastlines. The changing climate will certainly cause huge changes around the world, and the challenge is to predict exactly what impact those changes will have.

In the world of marine science, this means grappling with a process called ocean acidification. As human activity pumps carbon dioxide into the atmosphere, some of the carbon dioxide gets absorbed into the sea, which raises its acidity.

Scientists have been concerned about this for more than a decade, says Hannes Baumann, an assistant professor of marine sciences who studies the phenomenon in his lab at UConn’s Avery Point campus. “The fundamental question,” he says, “is whether or not organisms can adapt to this threat.”

That question is important, because although ocean acidification is happening, it is a slow process. Levels of carbon dioxide in the atmosphere have increased more than 50 percent since the beginning of the Industrial Revolution. They are expected to undergo another four-fold increase, but over the course of the next 300 years.

“Three hundred years is only five or six generations for whales or long-lived sharks,” says Baumann, “or 300,000 generations of single-celled organisms.”

Recent work has thus focused on whether or not species can evolve along with the ocean, adapting over time to the increasing acidity.

Measuring evolutionary potential

In order to answer that question, Baumann and his colleagues turned to a small but important fish, the Atlantic silverside, Menidia menidia. Common across the shallow waters of eastern North America, the silverside is an important food source for aquatic birds like egret and cormorant, as well as commercially important fish species like bluefish and striped bass.

The researchers’ goal was to measure the so-called “evolutionary potential” of this species. It was already known that high levels of carbon dioxide would kill many, but not all, Atlantic silverside larvae. The researchers wanted to know whether the likelihood of surviving had a genetic component: if fish that were related to one another were more or less likely to survive in the new environment.

“We were basically trying to answer the question: Can they evolve?” Baumann says.

His team approached the problem by capturing wild silverside from a beach in Long Island Sound, and raising several groups of their offspring in the lab, some under normal ocean conditions, and some in a more acidic environment.

They then tracked how long each of the fish lived, and analyzed their DNA, looking for what are called “microsatellites” – the same repetitive strands of DNA that are used in human paternity tests. The analysis revealed which fish were related to one another.

The team found that related fish had similar lifespans, suggesting that there is indeed a significant genetic component to survival in an acidic ocean. This means that the fish does have the potential to evolve, a finding which may have important ramifications for predictions about how the ocean environment will change with the changing climate.

Baumann, who recently joined the faculty at UConn after an appointment at Stony Brook University, was enthusiastic about the result, primarily because it demonstrates a method by which the evolutionary potential of other species can be measured.

“This is an experiment that can be performed in one generation,” he says. He is hopeful that the results will prove useful in predicting how oysters, sea urchins, and a host of other marine organisms will be able to cope with the changing ocean environment.

The research was first published Feb. 14 online, and will appear in the March issue of the journal Evolutionary Applications.

This work was made possible by grants from the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA).

 

Web coverage: UConn Today | NSF | OceanBites | ScienceDaily | AAAS EurekAlert | EnvResearchWeb | Phys.org | ScienceWR

[Publication] “Detecting the unexpected: A research framework for ocean acidification”

Pfister et al. Detecting the Unexpected ES & T
During a meeting of Principal Investigators of Ocean Acidification Research projects – a number of diverse minds came together and discussed for 3 days the state of the art and the future of Ocean Acidification Research. The result is a principled framework of directions based on three key observations and lessons learned from previous similar research challenges. (1) the response of individuals does not necessarily predict the response of ecosystems, (2) the structure and function of ecosystems may respond differently to OA, and (3) much of our current research thrust is still going towards understanding individual species responses to the predicted changes in ocean carbon chemistry, whereas much needed attention to interactions between organism and ecosystems and ecosystem and ocean chemistry is still wanting.

Pfister, C., Esbaugh, A., Frieder, C., Baumann, H., Bockmon, E., White, M., Carter, B., Benway, H., Blanchette, C. Carrington, E., McClintock, J., McCorkle, D., McGillis, W., Mooney, T., Zivieri, P. (2014). Detecting the unexpected: A research framework for ocean acidification. Environmental Science & Technology 48: 9982-9994