local adaptation

Hannes back in Chile to repeat common garden experiment!

25. September 2025. I have been asked by quite a few people (on both hemispheres), why I had to go again to Chile, to the same place, the same marine station, to repeat the same experiment from two years ago? Did the first fail somehow? No, not at all. The first experiment yielded really intriguing data suggesting similar local adaptation patterns in southern compared to northern hemisphere silversides.

But the catch is that one year could be a coincidence. To make statistically robust inferences about the nature of local adaptation in Chilean silversides, good science simply demands another, a second independent data set of observations. Even more so, because (i) the adaptation strength here is likely subtle, and (ii) some treatments and populations were indeed less successful the first time around.

And so I'm here again. The place where I spent 6 months during my sabbatical feels wonderfully familiar - despite being thousands of miles away from home. The setting September sun pours gold over the halfmoon-shaped Coliumo Bay. Spring is in the air here, but the little beach town is still mostly void of the summer crowds. I wander through the streets, recognize the stray dogs, and many of the people in this little village say they remember me and my family from two years ago.

In the marine station, the experiment is now being set up in a different location. Inside the aquarium, which is climate-controlled and therefore more suitable. It took us two years to gain permission to move in, and I had to have custom tanks made to set it all up. Will it all be worth it?

Now time is really tight, the setup needs to be put together in just a few days, because in the low latitudes of Chile's north, the spawning season of pejerrey has already begun. Fingers crossed.

buildup03
On 26 September 2025, Claudio Gallardo flexes off some tank material to make it fit

buildup02
Tight, but this is what will have to do!

buildup01
Plumbing begins in the Aquarium of the Marine Station in Dichato

Another crazy road trip for genetic silverside research

15 May 2022. A full, blood red moon rises over Pine Island this Sunday evening. The sight makes not just humans swoon – its pull extents underwater to all kinds of critters that take it as cue for reproduction. Critters just like the Atlantic Silverside, which once again we pursue this season to extract more of its genomic 'secrets'.

Specifically, it is this weekend that we embark on yet another ambitious road trip to find and sample spawning-ripe silversides from two very far apart places: Morehead City, North Carolina and Beverly, Massachusetts. The goal: transport spawners live from each population to UConn's Rankin Seawater lab and produce calculated crosses that will allow studying the role of genomic inversions in local adaptation.

The crew this time are Maria Akopyan and Jessica Rick from Cornell University, along with Lucas Jones and Hannes Baumann from UConn. Big shout-out to Tara Duffy for her help with beach seining at Beverly, MA. During the spawning event on May 15th, Nina Therkildsen also joined the efforts. The design and experiment are part of Jessi's successful NSF post-doctoral fellowship proposal, which the whole UConn-Cornell silverside team supports.

Click through the pictures below to retrace the steps of an exhausting but so far successful effort. Fingers crossed that all goes well during the next weeks, when the fish need to hatch, survive and grow, so they can be assessed for their traits.

Map-trip
The US east coast map illustrates our ambitious sampling plan.

ChesapeakeBridge-fog
On 12th May, fog envelopes the Chesapeake Bridge on our drive south to Morehead City, NC.

Morehead-City-beach-crew
Maria, Hannes, Lucas, and Jessi getting ready to beach seine the Morehead City site

Morehead-City-beach-crew
Our 100ft beach seine is being laid out on the Morehead City site.

MoreheadCity-Fish-Bucket
On May 13th, Atlantic silversides caught in Morehead City swim in a bucket.

Lucas-MC-car
Lucas checking whether the fish are properly prepared for transport.

ObearPark-Fish-Cooler
Ripe adult silversides are being transported in large coolers, with proper aeration and water changes underway.

Maria-driving-posterized
Maria driving through the night. The long trip back up north is especially taxing.

Obear-Park-Jessi-Tara
On May 14th, Jessi and Tara pull our seine net up the beach on Obear Park, Beverly, MA.

Maria-ObearPark
Maria bringing a new sampling bucket to Jessi and Tara (background) seining.

14May-ObearPark-BeverlyMA-Jessi
Seining at low tide in Obear Park is made more difficult by ankle deep mud.

Nina-Jessi-Rankin
On May 15th, at UConn's Rankin Seawater lab, Nina and Jessi strategize about designing crosses.

HBJessiNina-Rankin
On May 15th, Hannes, Jessi, and Nina spawn individual silversides.

Jessi-fertilizing
Jessi squeezing a silverside female for eggs in UConn's Rankin Lab.

16May-NCB1-23h-25C-Menidia-embryo01
A 24 hours old silverside embryo developing at 26C.

Jessi-Rankin
On May 15th, Jessi lays out individual crosses to be reared in the circle tanks in UConn's Rankin Lab.

Nina-Maria-BaumannLab
Nina and Maria extract DNA from male and female spawners to determine a specific regions homo- vs. heterozygosity.

Jessi-Rankin-Tanks
Screens with attached embryos are being suspended in buckets for development under two different temperatures.

Gel-plot-HOM-HET
A specific capture probe (TARMS gel) allows the quick determination whether adult spawners were homo- or heterozygous for specific inversions on chromosomes 11, 18, or 24

Menidia_NCMAexp_NCB1_6dph_052722_3
A silverside larva 6 days post hatch produced from NC spawners. The stomach is full of brine shrimp nauplii, pigmentation just started.

[Research news] New NSF grant to study silverside genes!

We are overjoyed to announce that NSF is funding a new and collaborative research project to look at the genomic underpinning of local adaptation in the Atlantic silverside! Check out below for a first glimpse of the project website.

Genes-banner

NSF-OCE #1756751 The genomic underpinnings of local adaptation despite gene flow along a coastal environmental cline (2018-2021)

Principal investigators

Nina-Therkildsen_r

Nina Therkildsen (Cornell)

.

hbpic2

Hannes Baumann (UConn)

Post-docs

Anna-Tigano

Anna Tigano (Cornell)

Graduate students

Maria-AkopyanCallie-Concannon

Maria Akopyan, Callie Concannon

Collaborators

Aryn-Wilder

Aryn Pearce-Wilder

Oceans are large, open habitats, where it was previously believed that the lack of obvious barriers to dispersal would result in extensive mixing, thereby preventing organisms from adapting genetically to particular habitats. It has recently become clear, however, that many marine species are subdivided into multiple populations that have evolved to thrive best under contrasting local environmental conditions. Nevertheless, we still know very little about the genomic mechanisms that enable divergent adaptations in the face of ongoing intermixing.

Learn more …

silverside-genes
This project focuses on the Atlantic silverside (Menidia menidia), a small estuarine fish that exhibits a remarkable degree of local adaptation in growth rates and a suite of other traits tightly associated with a climatic gradient across latitudes. Decades of prior lab and field studies have made M. menidia one of the marine species for which we have the best understanding of evolutionary tradeoffs among traits and drivers of selection causing adaptive divergence. Yet, the underlying genomic basis is so far completely unknown.We will integrate whole genome sequencing data from wild fish sampled across the distribution range with breeding experiments in the laboratory to decipher these genomic underpinnings. This will provide one of the most comprehensive assessments of the genomic basis for local adaptation in the oceans to date, thereby generating insights that are urgently needed for better predictions about how species can respond to rapid environmental change. The project will provide interdisciplinary training for a postdoc as well as two graduate and several undergraduate students from underrepresented minorities. The findings will also be leveraged to develop engaging teaching and outreach materials (e.g. a video documentary and popular science articles) to promote a better understanding of ecology, evolution, and local adaptation among science students and the general public.

The project is organized into four interconnected components

Part 1 examines fine-scale spatial patterns of genomic differentiation along the cline to a) characterize the connectivity landscape, b) identify genomic regions under divergent selection, and c) deduce potential drivers and targets of selection by examining how allele frequencies vary in relation to environmental factors and biogeographic features.
Part 2 maps key locally adapted traits to the genome to dissect their underlying genomic basis.
Part 3 integrates patterns of variation in the wild (part 1) and the mapping of traits under controlled conditions (part 2) to a) examine how genomic architectures underlying local adaptation vary across gene flow regimes and b) elucidating the potential role of chromosomal rearrangements and other tight linkage among adaptive alleles in facilitating adaptation.
Part 4 examines dispersal – selection dynamics over seasonal time scales to a) infer how selection against migrants and their offspring maintains local adaptation despite homogenizing connectivity and b) validate candidate loci for local adaptation.

Geneproject-banner