Projects

[Lab news] Chris and Hannes attend ICES Annual Science conference

ASC 2017 poster

On 19-21 September 2017, Chris Murray and Hannes Baumann traveled to Fort Lauderdale, Florida, to attend the ICES (International Council for the Exploration of the Sea) Annual Science Conference in order to present our ongoing NSF and NOAA funded research on potential ocean acidification effects in Atlantic Silversides and Norther Sand lance. Due to Hurricane Irma, which had impacted all of Florida just a week earlier, it was a great relief that the conference could actually be successfully held.

Together with Chris Chambers (NOAA), Ian Bradbury (DFO, Canada), and Richard McBride (NOAA), Hannes convened a theme session titled “Patterns, sources, and consequences of intraspecific variation in responses of marine fauna to environmental stressors“.

Chris gave a talk and a poster during this session, which was well received and was a worthwhile exposure for Chris and our lab’s research.


  • Murray, C. S. and Baumann H. 2017. Growth costs of high CO2 environments in a marine fish: importance of feeding methodology. Talk.
  • Murray, C. S., Wiley, D., and Baumann H. 2017. A preliminary study testing the effects of high CO2 on the early life stages of the northern sand lance Ammodytes dubius. Poster.

[Lab news] Emma Cross joins the team!

Emma-Cross

Emma Cross joined our team as a post-doctoral researcher in September 2017, after receiving her PhD from Cambridge University, UK, in spring 2016. Her previous work focused on the CO2-sensitivity of antarctic brachiopods, a group of ancient, sessile calcifiers that build large shells but are unrelated to mollusks. In addition to experimental approaches, she examined historical collections of specimens from New Zealand. Her findings suggest that brachiopods can cope with acidifying oceans by compensating for increased shell dissolution by increased shell growth. Emma now transitions to working with fish, particularly Atlantic silversides, testing how fluctuating pH and oxygen environments typical of nearshore environments affect early life survival and growth.


Have a look at Emma’s recent publications


Here’s how Emma describes her first weeks of her new chapter of life and science:

“Everything is going swimmingly well so far (pun intended!). It is really great to be a part of the Baumann lab and I’m really enjoying expanding my knowledge of biological impacts of environmental change. My previous ocean acidification and warming research focussed on the effects on polar and temperate brachiopod shells so I’m now looking forward to investigating more climate change stressors and impacts on different taxa. I have already participated in my first beach seining trip exploring the local biodiversity and getting a feel for the regular fieldwork undertaken by the Baumann lab. It was lots of fun and I’m so excited to be carrying out research at an Institute located right on the ocean again! I am also enjoying living in a new country and looking forward to exploring more once I’ve finished building all my flatpack furniture!”

[Lab news] Baumann & Nye lab attend 41st Larval Fish Conference

From 11-16 July, Hannes, Chris, Jake (Baumann lab, UConn) and Teresa (Nye lab, Stony Brook) were presenting research from our common NSF project at the 41st Larval Fish Conference, organized by the Early Life History Section of the American Fisheries Society in Austin, TX.

Hannes Baumann
Chris-Murray
Jacob-Snyder
Teresa-Schwemmer

Holding the fort and maintaining experiments at Avery Point were James, Julie, and Elle. Thank you for helping out.

JamesHarrington
Julie-Pringle
Elle-Parks_s

We gave four talks in two sessions:

  • Baumann H., Snyder, J.T., and Murray, C.S. 2017. Quantifying offspring CO2-sensitivity in a fish: a meta-analysis.
  • Snyder, J.T., Murray, C.S., and Baumann H. 2017.
    Potential for maternal effects on offspring CO2 sensitivity in a coastal marine fish
  • Murray, C.S., Snyder, J.T., and Baumann H. 2017. A multi-factorial evaluation of temperature-dependent CO2-effects in a coastal forage fish.
  • Schwemmer, T., Baumann H., and Nye, J. 2017.
    Physiological effects of increased temperature and carbon dioxide on Atlantic silverside early life stages
    <

Here is how Jake rates his first international conference experience:

Jacob-Snyder
Austin Texas, July 2017. “Attending the Joint Meeting of Ichthyologists and Herpetologists was my first visit to Austin Texas and my first large-conference presentation. My presentation was part of the Larval Fish Conference, a sub-section of the larger meeting, and I quickly learned how welcoming the larval fish group of researchers, scientists, professionals, and students were. Having not been to a “destination” conference like this before, I had little expectations, but I had a lot of fun networking, discussing research, and socializing. I think the coolest non-conference related event was seeing the Mexican Free-Tailed bats that live in the Congress Street Bridge, as every night around sunset they leave to go feed. Seeing hundreds of thousands of bats stream out of the bridge was incredible, and something I’d highly recommend. The city of Austin was great, and I spent much of the first day (pre-conference) exploring the city in the scorching heat. Overall the Baumann Lab had an excellent time at the conference, and can’t wait for the next one!”

Jacob Snyder “Austin 2017” photoblog. RedSkiesPhotography

[Lab news] Group effort – starting new silverside experiments in June 2017

It’s the beginning of June, and in the Baumann lab that means: high time for experimental research on the Atlantic Silverside, the famous forage fish and important model species! This year, we have several major objectives; our NSF-sponsored research examines the sensitivity of offspring to the individual and combined effects of high CO2 and low oxygen (Chris Murray), while in collaboration with our colleagues from Cornell University we rear several families for genetic and transcriptomic studies. Elle Parks, our REU student just started her work on the effects of CO2 and temperature on the starvation resistance of silverside larvae. As always, the days when new experiments start are a group effort, where everybody including many volunteers help. Thanks to Peter Morenus (UConn) for the coming down for documenting the activities!

This story is also featured on UConn Today.



[Field work] To Georgia and back in 48h – a special road trip for science

By H.B.

Somewhere after Richmond, VA, the sun sets and traffic on the I-95 begins moving better. At long last. The four people in the burgundy Dogde Challenger have all already cycled through their driving shifts once and dare an impatient glance at the time left. Still more than 8 hours. More than 8 hours to reach this very special location at the Atlantic coast – Jekyll Island, Georgia. In the trunk of the car a jumble of coolers and a beach seine, buckets, air pumps, and hoses topped with the crumpled witnesses of roadside dining. This is no ordinary road trip.

We, that are Aryn and Nicholas from the Therkildsen lab of Conservation Genetics lab at Cornell University and James and Hannes from the Fish Ecology Lab here at UConn; we went on this road trip to catch live, spawning ripe Atlantic silversides from the southern edge of the species distribution. We then intended to bring these fish back to UConn alive, sample another population from the south shore of Long Island (Patchogue, NY) and produce genetic crosses of these populations.

The broad goal of our expanding collaborative efforts with our geneticist friends from Cornell is the creation of an annotated genome of this species, which will be an important milestone in deepening or understanding of the molecular and genetic responses of organisms to local selection regimes and marine climate change. Given the Atlantic silverside’s ecological importance as an abundant forage fish along the American east coast and it’s rich history as a model organism in evolutionary and ecological studies, the annotated genome is the next logical step.

Even at hindsight, the plan still seems a little insane. But it worked. We indeed managed to catch spawning silversides at the Georgia site and then transported them immediately back to our Rankin Lab, which involved another 17 hours of driving back. After securing samples from Patchogue, we indeed managed to cross single parents from each site to produce full-sib crosses that will later be used to produce what geneticist call a linkage map. Other across and within-population crosses will be used to study gene expression at two different temperatures or raise adults for producing an F2 generation.

The silverside larvae are currently well, feeding, and growing up nicely. We all cross fingers for this enterprise to end in good samples and a step forward for genetic studies on a marine fish.

[Field work] Our sand lance research in the news

NOAA sanctuaries just published a little blurb online, introducing sand lance and it’s importance to the Stellwagen Bank National Marine Sanctuary, including a small section on the current research efforts funded by NOAA Regional SeaGrant.

“To that end, the team is collaborating with scientists from the University of Connecticut (UConn). UConn study members transport live-caught sanctuary sand lance to their lab, where further generations of sand lance are raised. The resulting larval sand lance are raised in high-tech rearing facilities that can be adjusted to mimic future ocean conditions.”

Sandlance laughing gull
Seabirds, sharks, seals, whales and more rely on sand lance as a food source. Here, a laughing gull munches one of these eel-like fish. Photo: Peter Flood

The entire article can be accessed by clicking on the link below
http://sanctuaries.noaa.gov/news/jan17/sand-lance-stellwagen-bank.html

[Field work] Sand lance spawning season has started

4th time’s the charm: sampling spawning ripe sand lance on Stellwagen Bank

scituate-sunrise
On 2 Dec 2016, the sun rises over Scituate, MA, harbor and the fishing trawler that will take us to Stellwagen Bank this time.
sb-chris-trawler
On 2 Dec 2016, Chris waits for the action to start, while the trawler is leaving Scituate Harbor
sandlance embryos
Sandlance embryos, 24h after fertilization. The embryo stage in this species can be up to two months!
Early morning on 2 December 2016, we left Scituate, MA, for the forth time this year, heading towards Stellwagen Bank in search of spawning ripe Northern sand lance (Ammodytes dubius), a winter spawning forage fish of great importance to the Stellwagen Bank National Marine Sanctuary and the object of latest research efforts. While during the last three cruises in late October and November, we saw a progression of ripening in the specimens, up to now we didn’t actually find spawning ripe individuals. Today, though, things are different, and when the first sand lance appear in our beam trawl, we immediately know that today we’ve been at the right time and at the right place.
It seemed an ambitious dream not too long ago, but now we’re happy report that we’ve started an experiment on sand lance embryos in our lab. Thanks to Chris Murray, David Wiley, Mike Thompson, captain Steve and his deckhand Matt for the successful trip!
scituate-panorama-sunrise
Early morning low tide at Scituate Harbor on 2 Dec 2016. The calm is deceiving; outside of the harbor the sea is pretty rough

Check out some footage of the trip and the beam trawl operation on board of captain Steve’s fishing vessel

[Field work] Catching sand lance on Stellwagen Bank

On 27 October 2016, Hannes, Chris and Julie joined researchers from the Stellwagen Bank National Marine Sanctuary (David Wiley, Anne-Marie Runfola, Brad Cabe, Michael Thompson), the USGS (Page Valentine, Dann Blackwood) and the crew of the R/V Auk (Dave Slocum, James Stasinos) to embark on our first of five total sampling missions in this enigmatic marine habitat. Our goal, catching live Northern sand lance, Ammodytes dubius, the so critical forage fish species that is referred to as the “backbone of the sanctuary”, because all kinds of marine predators from whales to tuna to seabirds gather on the bank to feast on them.

Our renewed efforts are part of our recently funded NOAA Regional SeaGrant Project to investigate the effects of ocean warming, acidification and low oxygen on sand lance early life stages.

As before, we first started by deploying a Seaboss sediment grab, which allows our colleagues from the USGS to characterize sediment types in association with the occurrence of sand lance. In addition, however, we brought a small beam trawl along for the first time to find out, whether we could more effectively catch sand lance and then transport them live to our seawater facility at UConn Avery Point. We are happy report that the efforts by all have paid off and that there are now ~ 180 adult ripening sand lance swimming in our tanks. Thanks all, see you again for the second survey in a few weeks!

Check out the video below, made from clips of no less than five different GoPro’s (if you listen carefully, around 2:40 into the clip you’ll hear the singing of some nearby humpback whales):



[New publication] Long-term growth consequences of acidification in Atlantic silversides

October 10th 2016 was a special day for our still young lab here at the University of Connecticut, Today, the ICES Journal of Marine Science published the paper of Chris Murray et al., which is the first of hopefully many publications of our experimental findings originating out of our new laboratory facility here at UConn Avery Point.
Chris and his co-authors report on a large-scale, quantitative rearing experiment on Atlantic silversides eggs, larvae and juveniles under contrasting CO2 conditions that took place between May – September 2015. This novel experiment was designed to address three critical issues lacking in previous ocean acidification research on fish. First, the study spanned several ontogenetic stages. Second, it used very large numbers of individuals to robustly characterize not just potential shifts in mean responses, but also changes in the distribution of length, weight, and condition factor. Third, it provided food at standardized, non-excess levels to prevent that potential metabolic costs of high CO2 exposure could be compensated by survivors simply by eating more food.
Overall the study demonstrated seemingly small but significant growth reductions due to high CO2 and identified a small number of fatty acids that were of significantly different concentrations in high vs. control juveniles.

murray-etal-ijms2016_fig3
Distributions of condition factor per 2mm TL interval for juvenile M.menidia reared for 122dph at control (a) and high CO2 conditions (b). Thick and thin black lines correspond to the 10th/90th and 25th/75th percentiles, respectively, while the red line depicts the median. Data below the 10th and above the 90th percentiles are depicted by black dots. Underlying grey bars show relative frequencies for each 2 mm TL class. Black and grey numbers correspond to numbers of individuals measured for both TL and wW, or for TL only, respectively.
murray-etal-ijms2016_fig4
Cumulative frequency distributions of (a) total length (TL) and (b) wet weight (wW), in juvenile M. menidia reared for 122 dph at control and high CO2 conditions.


Murray, C.S.*, Fuiman, L., and Baumann, H. (2016)
Consequences of elevated CO2 exposure across multiple life stages in a coastal forage fish.
ICES Journal of Marine Science (published online 10 Oct 2016)

[Opportunity] Summer Undergraduate Research Fund (SURF)

Seasonal dynamics in Atlantic Silverside abundance, spawning, and offspring sensitivity to low pH and oxygen

The Summer Undergraduate Research Fund (SURF) offers a summer stipend of up to $3,500 + $500 research. The Evolutionary Fish Ecology Lab offers a variety of suitable topics for undergraduates to work on.
Deadline for applications is January, 20th 2017.

How to apply: http://ugradresearch.uconn.edu/surf/#apply

surf2017