[Field work] To Georgia and back in 48h – a special road trip for science

By H.B.

Somewhere after Richmond, VA, the sun sets and traffic on the I-95 begins moving better. At long last. The four people in the burgundy Dogde Challenger have all already cycled through their driving shifts once and dare an impatient glance at the time left. Still more than 8 hours. More than 8 hours to reach this very special location at the Atlantic coast – Jekyll Island, Georgia. In the trunk of the car a jumble of coolers and a beach seine, buckets, air pumps, and hoses topped with the crumpled witnesses of roadside dining. This is no ordinary road trip.

We, that are Aryn and Nicholas from the Therkildsen lab of Conservation Genetics lab at Cornell University and James and Hannes from the Fish Ecology Lab here at UConn; we went on this road trip to catch live, spawning ripe Atlantic silversides from the southern edge of the species distribution. We then intended to bring these fish back to UConn alive, sample another population from the south shore of Long Island (Patchogue, NY) and produce genetic crosses of these populations.

The broad goal of our expanding collaborative efforts with our geneticist friends from Cornell is the creation of an annotated genome of this species, which will be an important milestone in deepening or understanding of the molecular and genetic responses of organisms to local selection regimes and marine climate change. Given the Atlantic silverside’s ecological importance as an abundant forage fish along the American east coast and it’s rich history as a model organism in evolutionary and ecological studies, the annotated genome is the next logical step.

Even at hindsight, the plan still seems a little insane. But it worked. We indeed managed to catch spawning silversides at the Georgia site and then transported them immediately back to our Rankin Lab, which involved another 17 hours of driving back. After securing samples from Patchogue, we indeed managed to cross single parents from each site to produce full-sib crosses that will later be used to produce what geneticist call a linkage map. Other across and within-population crosses will be used to study gene expression at two different temperatures or raise adults for producing an F2 generation.

The silverside larvae are currently well, feeding, and growing up nicely. We all cross fingers for this enterprise to end in good samples and a step forward for genetic studies on a marine fish.

[Field work] Our sand lance research in the news

NOAA sanctuaries just published a little blurb online, introducing sand lance and it’s importance to the Stellwagen Bank National Marine Sanctuary, including a small section on the current research efforts funded by NOAA Regional SeaGrant.

“To that end, the team is collaborating with scientists from the University of Connecticut (UConn). UConn study members transport live-caught sanctuary sand lance to their lab, where further generations of sand lance are raised. The resulting larval sand lance are raised in high-tech rearing facilities that can be adjusted to mimic future ocean conditions.”

Sandlance laughing gull
Seabirds, sharks, seals, whales and more rely on sand lance as a food source. Here, a laughing gull munches one of these eel-like fish. Photo: Peter Flood

The entire article can be accessed by clicking on the link below

[Field work] Sand lance spawning season has started

4th time’s the charm: sampling spawning ripe sand lance on Stellwagen Bank

On 2 Dec 2016, the sun rises over Scituate, MA, harbor and the fishing trawler that will take us to Stellwagen Bank this time.
On 2 Dec 2016, Chris waits for the action to start, while the trawler is leaving Scituate Harbor
sandlance embryos
Sandlance embryos, 24h after fertilization. The embryo stage in this species can be up to two months!
Early morning on 2 December 2016, we left Scituate, MA, for the forth time this year, heading towards Stellwagen Bank in search of spawning ripe Northern sand lance (Ammodytes dubius), a winter spawning forage fish of great importance to the Stellwagen Bank National Marine Sanctuary and the object of latest research efforts. While during the last three cruises in late October and November, we saw a progression of ripening in the specimens, up to now we didn’t actually find spawning ripe individuals. Today, though, things are different, and when the first sand lance appear in our beam trawl, we immediately know that today we’ve been at the right time and at the right place.
It seemed an ambitious dream not too long ago, but now we’re happy report that we’ve started an experiment on sand lance embryos in our lab. Thanks to Chris Murray, David Wiley, Mike Thompson, captain Steve and his deckhand Matt for the successful trip!
Early morning low tide at Scituate Harbor on 2 Dec 2016. The calm is deceiving; outside of the harbor the sea is pretty rough

Check out some footage of the trip and the beam trawl operation on board of captain Steve’s fishing vessel

[Field work] Catching sand lance on Stellwagen Bank

On 27 October 2016, Hannes, Chris and Julie joined researchers from the Stellwagen Bank National Marine Sanctuary (David Wiley, Anne-Marie Runfola, Brad Cabe, Michael Thompson), the USGS (Page Valentine, Dann Blackwood) and the crew of the R/V Auk (Dave Slocum, James Stasinos) to embark on our first of five total sampling missions in this enigmatic marine habitat. Our goal, catching live Northern sand lance, Ammodytes dubius, the so critical forage fish species that is referred to as the “backbone of the sanctuary”, because all kinds of marine predators from whales to tuna to seabirds gather on the bank to feast on them.

Our renewed efforts are part of our recently funded NOAA Regional SeaGrant Project to investigate the effects of ocean warming, acidification and low oxygen on sand lance early life stages.

As before, we first started by deploying a Seaboss sediment grab, which allows our colleagues from the USGS to characterize sediment types in association with the occurrence of sand lance. In addition, however, we brought a small beam trawl along for the first time to find out, whether we could more effectively catch sand lance and then transport them live to our seawater facility at UConn Avery Point. We are happy report that the efforts by all have paid off and that there are now ~ 180 adult ripening sand lance swimming in our tanks. Thanks all, see you again for the second survey in a few weeks!

Check out the video below, made from clips of no less than five different GoPro’s (if you listen carefully, around 2:40 into the clip you’ll hear the singing of some nearby humpback whales):

[New publication] Long-term growth consequences of acidification in Atlantic silversides

October 10th 2016 was a special day for our still young lab here at the University of Connecticut, Today, the ICES Journal of Marine Science published the paper of Chris Murray et al., which is the first of hopefully many publications of our experimental findings originating out of our new laboratory facility here at UConn Avery Point.
Chris and his co-authors report on a large-scale, quantitative rearing experiment on Atlantic silversides eggs, larvae and juveniles under contrasting CO2 conditions that took place between May – September 2015. This novel experiment was designed to address three critical issues lacking in previous ocean acidification research on fish. First, the study spanned several ontogenetic stages. Second, it used very large numbers of individuals to robustly characterize not just potential shifts in mean responses, but also changes in the distribution of length, weight, and condition factor. Third, it provided food at standardized, non-excess levels to prevent that potential metabolic costs of high CO2 exposure could be compensated by survivors simply by eating more food.
Overall the study demonstrated seemingly small but significant growth reductions due to high CO2 and identified a small number of fatty acids that were of significantly different concentrations in high vs. control juveniles.

Distributions of condition factor per 2mm TL interval for juvenile M.menidia reared for 122dph at control (a) and high CO2 conditions (b). Thick and thin black lines correspond to the 10th/90th and 25th/75th percentiles, respectively, while the red line depicts the median. Data below the 10th and above the 90th percentiles are depicted by black dots. Underlying grey bars show relative frequencies for each 2 mm TL class. Black and grey numbers correspond to numbers of individuals measured for both TL and wW, or for TL only, respectively.
Cumulative frequency distributions of (a) total length (TL) and (b) wet weight (wW), in juvenile M. menidia reared for 122 dph at control and high CO2 conditions.

Murray, C.S.*, Fuiman, L., and Baumann, H. (2016)
Consequences of elevated CO2 exposure across multiple life stages in a coastal forage fish.
ICES Journal of Marine Science (published online 10 Oct 2016)

[Opportunity] Summer Undergraduate Research Fund (SURF)

Seasonal dynamics in Atlantic Silverside abundance, spawning, and offspring sensitivity to low pH and oxygen

The Summer Undergraduate Research Fund (SURF) offers a summer stipend of up to $3,500 + $500 research. The Evolutionary Fish Ecology Lab offers a variety of suitable topics for undergraduates to work on.
Deadline for applications is January, 20th 2017.

How to apply:


NOAA announces funding for our research on sand lance

NOAA and Sea Grant fund $800,000 in research to understand effects of ocean changes on iconic Northeast marine life

The Ocean & Atmospheric Research program (OAR) of NOAA and Sea Grant just announced the winners of its most recent round of research funding to better understand the consequences of ocean warming and acidification on key marine resources in U.S. Northeast coastal waters. We are happy and proud that our proposed work on the climate sensitivity of Northern sand lance (Ammodytes dubius) was one of the four projects selected for funding. This is particularly good news for Chris Murray, who for his PhD can now expand his experimental rearing expertise to this important species.
This work will be conducted collaboratively with colleagues from NOAA (David Wiley), USGS (Page Valentine), Boston University (Les Kaufman), and Woods Hole Oceanographic Institution (Scott Gallager).

You can read the official announcement as it appeared on 6 September 2016 on NOAA’s News site.

Chris RV Auk Sediment grab
Chris Murray checking for sand lance caught by the sediment grab. RV Auk (Photo credit: Jacob Snyder)

[Collaboration] Nina and Aryn visit from Cornell University

On 19-20 July, our lab temporarily transformed into a genetics laboratory, as Nina Therkildsen and her post-doc Aryn Pierce Wilder visited us from Cornell University (Therkildsen Lab). Their lab also shares the fascination for the Atlantic silverside as a model organism and has set out to eventually assemble the fully annotated genome of this species.

During their visit, they could accompany us for our bi-weekly beach seining in Mumford Cove, where we collected juveniles born this year as well as the last few spawning ripe adults at the end of the season. It was a great summer morning and fun for everyone.

In the lab, Nina and Aryn went on dissecting different types of tissue (muscle, liver, spleen, gills, fins) from a few specimens destined for genetic analyses. In the Rankin lab, we tried a novel procedure on this species, i.e., making haploid embryos by fertilizing strip-spawned eggs with sperm that was UV-radiated before.

Thank you for visiting, Nina and Aryn, and we will see you back in fall, when Nina will give a Friday seminar on 11 November 2016. We’re looking forward to what she will have to report!

[Student video] Climate Change: A Future for Fish in a Changing Ocean

A big shout-out to Megan, Rainer, and Liz who apart from their intrepid work as volunteers in our lab also excelled here in their video project for MARN3000. They interviewed Profs. Kelly Lombardo, Michael Finiguerra, and Hannes Baumann about aspects of Marine Climate Change and then cut their answers with researched video material from the web. Note the sartorial touch throughout the clip (6 min)!
Well done, all!

Megan Barry
Megan Barry
Elizabeth Karamavros
Elizabeth Karamavros

[Funding] New NSF OCE grant: 3 more exciting years of work!

We are happy to announce the continued support of the National Science Foundation, Division of Biological Oceanography, which just started to fund our project about multi-stressor effects on the early life stages of fish. This is collaborative work with Prof. Janet Nye’s lab at Stony Brook University, NY, which will strengthen ties between UConn and Stony Brook Marine Sciences. The work has already started and we’re looking forward to new discoveries!

Baumann, H. and Nye, J. 2015. Collaborative research: Understanding the effects of acidification and hypoxia within and across generations in a coastal marine fish. NSF Project# 1536336 (3 years)

Learn more by accessing the NSF-OCE non-technical proposal abstract