Field work

Our sandlance work featured in the CapeCodFishermen

Reposted from TheCapeCodFishermen, April 28th 2021

By David N. Wiley

Bluefin tuna and striped bass crash through the waves. Seabirds wheel overhead and plunge into the water. Gape-mouthed whales rise from below. Schools of cod and dogfish hide below the surface.

While the convergence of such diverse sea life might seem accidental, those in the know thank a small, slender fish called a sand eel for the bonanza.

Also known as sand lance, these three-to-six inch forage fish are a main food source for many of the top predators in the Gulf of Maine and on Georges Bank, including some of the most commercially important species.

As their name implies, sand lance are tied to sand habitat, but not just any sand will do. To avoid predators, sand lance spend most of the night and parts of the day buried. When disturbed, they rocket out of the bottom, then dive head first and at full speed back into the sand.

As a result, their sand of choice has to be coarse enough to hold oxygen for the fish to “breathe” while buried, but soft enough to allow high-speed body penetration. One of the reasons Cape Cod is their Mecca is a band of perfect sand stretching from Stellwagen Bank along the backside of Cape Cod, past Chatham and up through Georges Bank. Whether you are a fisherman, whale watcher or seabird enthusiast, it’s this band of sand, and the sand lance that inhabit it, that makes the Cape special.

Sand and sand lance are the backbone of Stellwagen Bank National Marine Sanctuary, responsible for it being one of the top places in the United States for viewing marine life, and a centuries old, highly productive fishing ground. Yet while fishermen appreciate the importance of sand lance, little is known about their biology and most of the world does not know they exist.

To remedy the situation, a team of researchers led by scientists from Stellwagen Bank National Marine Sanctuary with partners from Boston University, Center for Coastal Studies, University of Connecticut, U.S. Geological Survey and Woods Hole Oceanographic Institution have been studying the forage fish to determine its importance and unlock some of its secrets.

One of the project’s first goals was to identify the sand lance spawning season. Using a specially designed and permitted small-mesh trawl, fished from Steve Welch’s F/V Mystic or NOAA’s R/V Auk, the team captured and examined sand lance. Thought to spawn from late fall through winter, several years of work demonstrated that sand lance on Stellwagen Bank spawn in a very narrow window at the end of November. Eggs are deposited on the seafloor and hatch after approximately six weeks.

Then things get interesting. Once hatched, sand lance are tiny, free-floating larvae for two to three months. Given this long free-floating period and the currents flowing over Stellwagen Bank, many sand lance born on the bank cannot stay there. So where do they come from and where do their offspring go?

To answer this question, the team used hydrographic modeling to backtrack to where free floating particles (like larval sand lance) would have originated prior to their sand settlement in March or April, and where drifting particles would end up two or three months after hatching.

It appears that larval sand lance settling on Stellwagen originate off the coast of Maine; years of highest sand lance abundance correspond to conditions that would have transported additional larval sand lance from as far north as Nova Scotia. The same modeling indicated that larval sand lance originating on Stellwagen Bank transport south to the Great South Channel and Nantucket Shoals (but not Georges Bank). In some years, currents moved them as far as New Jersey.

This is just another example of the interconnected world that creates a productive marine environment. Since few sand lance in the study lived past three years, the dependence on shifting currents to populate the bank could be one thing responsible for boom and bust years typical of sand lance abundance. The team is currently examining genetics of sand lance taken from throughout the Gulf of Maine, the mid-Atlantic, and eastern Canada, to gain additional insight into population structure.

Do boom-bust years influence the distribution and abundance of predators? The team investigated the association of sand lance with humpback whales and great shearwater seabirds by placing satellite tags on both species to track their movements.

Throughout the Gulf of Maine, tracking revealed that both species spend the vast majority of their time over sand lance habitat, and DNA from fecal shearwater samples showed sand lance to be the bird’s main prey. Surveys in Stellwagen also demonstrated a high co-occurrence of sand lance, humpback whales and great shearwaters.

Sand lance feed primarily from February to July, mostly on Calanus finmarchicus copepods. They stop feeding from August through October, with low levels of feeding from the end of November to January. Body growth and fat content show similar trends, with length and fat stores increasing from February to July. After July, the fish retreat to bury in the sandy bottom, conserving energy for spawning.

The team then turned its attention to the future of the valuable fish, something of extreme importance to fishermen. Ripe fish captured in November were strip-spawned on board the boats and transported to Connecticut, where eggs and larvae were raised in special tanks that allowed temperature and acidity to be manipulated to mimic future ocean conditions under climate change. Increased temperature and acidity had a dramatic negative impact on larval survival. According to Dr. Hannes Baumann, whose lab led the work, sand lance may be unusually sensitive to ocean acidification.

The future of sand lance was also a focus of team members Joel Llopiz and Justin Suca from Woods Hole Oceanographic Institution. They came to some worrisome conclusions.

The abundance of tiny C. finmarchicus copepods directly influences sand lance health: Abundant C. finmarchicus led to good parental condition and high reproductive success, while low numbers resulted in poor parental condition and poor reproductive success. Scientists have suggested climate change scenarios in the Gulf of Maine will lead to reduced abundance of this critical copepod resource. Adding to the problem was their finding that warm slope water coming through the Northeast Channel north of Georges Bank led to the death of overwintering reproductive adults.

With the Gulf of Maine warming faster than 99 percent of the world’s oceans, there is concern about the future of sand lance and its potential impact to the productivity of the Gulf of Maine, Georges Bank and other areas. While states with fisheries and other marine resources supported by sand lance cannot solve climate change issues, they can work to make sand lance more resilient to climate change. One way is to eliminate as many non-climate stressors as possible.

For example, in 2020 Massachusetts promulgated a rule limiting daily sand lance landings to 200 pounds. Rhode Island followed suit in 2021. These rules were designed to discourage the development of a commercial fishery for the species, such as the huge industrial fishery in Europe’s North Sea.

Since a commercial sand lance fishery does not currently exist here, adopting this rule by other states would be an easy, proactive way to make our waters, and the people who depend on them, more resistant to climate change disruption.

(Dr. David N. Wiley is the Research Ecologist for Stellwagen Bank National Marine Santuary. Funding for the project was provided by the Bureau of Ocean Energy Management, The Volgenau Foundation, Northeast and Woods Hole Sea Grant, International Fund for Animal Welfare, Stellwagen Bank National Marine Sanctuary and the National Marine Sanctuary Foundation. Dan Blackwood, Dr. Gavin Fay, Peter Hong, Dr. Les Kaufmann, Kevin Powers, Dr. Jooke Robbins, Dr. Tammy Silva, Mike Thompson, and Dr. Page Valentine contributed to the study)

Baumann-sandlance-470x504

Baby sturgeon in the Connecticut River!

Babysturgeon

Juvenile Atlantic sturgeon caught in June 2020 in the Connecticut River (photo: Jacque Benway, CTDEEP)

By Kelli Mosca.
3 July 2020. Atlantic sturgeon (Acipenser oxyrinchus) is an endangered, long-lived, anadromous fish that is found along the North American coast from the St. Lawrence River (Canada) to the St. John’s River (Florida). Historically, Atlantic sturgeon spawned in the Connecticut River, but until recently spawning populations were thought to be extirpated. In June 2020, a small, very young and therefore likely pre-migratory specimen (253mm) was captured by CTDEEP in the Connecticut River (above). This discovery is only the second after the first occurrence of small sturgeon in 2014! Together, this may be the beginning of a small Atlantic Sturgeon population rediscovering their long-lost spawning ground in the Connecticut River. CTDEEP and the Baumann Lab are working to find more fish of this size- and year class, and answer related questions about surgeon age and size and migration patterns. (CT SeaGrant project)

[New Publication] Fish and Fisheries publishes review of sand lance!

20 March 2020. We are happy to announce that the prestigious journal Fish & Fisheries just published a comprehensive review about the role of sand lance in the Northwest Atlantic Shelf ecosystem. The article, which came out of a workshop on this topic three years ago, reviews the the current state of knowledge about these enigmatic and important forage fish and urges continued efforts to better understand their role in the ecosystem and sensitivity to climate stressors.


SL beam trawl_credit HB
Sand lance caught on Stellwagen Bank in November 2014

The publication of this article was featured by UConn Today on 24 March 2020.


This work represents the first comprehensive assessment of this important forage fish in the Northwest Atlantic, though similar efforts have been carried out in the Pacific Northwest and Europe. In the Atlantic, sand lance are observed to be a significant food source for the federally endangered Roseate tern, Atlantic sturgeon and cod, Harbor and Grey seals and Minke and Humpback whales. “This paper is a call to our peers and colleagues that there is a big gap in knowledge, and to bring more attention to these species as unmanaged forage fish,” says Staudinger.


Staudinger, M., Goyert, H., Suca, J., Coleman, K., Welch, L., Llopiz, J., Wiley, D., Altman, I., Applegate, A., Auster, P., Baumann, H., Beaty, J., Boelke, D., Kaufman, L., Loring, P., Moxley, J., Paton, S., Powers, K., Richardson, D.E., Robbins, J., Runge, J., Smith, B.E., Spiegel, C., and Steinmetz, H. (2020)
The role of sand lances (Ammodytes sp.) in the Northwest Atlantic Ecosystem: a synthesis of current knowledge with implications for conservation and management
Fish and Fisheries (published online 20 March 2020)

[New Project] CTDEEP is funding our Atlantic sturgeon proposal!

1 Feb 2020. We are elated to announce that Connecticut Sea Grant has decided to fund our latest research proposal to study Atlantic sturgeon in Long Island Sound and the Connecticut River! The project is funded for two years under the most recent Omnibus Funding call and will examine the growth and seasonal movement of these magnificent, ancient fish.
Kelli-Mosca_s
Kelli Mosca
The project will fund the Master thesis research of Kelli Mosca, the most recent addition to our lab! After receiving her Bachelors degree from the University of New Haven, Kelli became a dedicated seasonal worker at the Connecticut Department of Energy and Environmental Protection (CTDEEP), where she assisted particularly with the sturgeon monitoring program. This has made her the best possible graduate candidate to work this project. Welcome, Kelli!

To learn more, head over to the project page.


Baumann, H., Savoy, T., Benway, J., and Pacileo, D. 2020. A re-emergent spawning population of Atlantic Sturgeon in the Connecticut River? Combined age analyses and telemetry data will provide new insights. Connecticut Sea Grant Program (NOAA) #R/LR-29, Feb 2020 - Feb 2022 ($150,000)

Atlantic-sturgeon-signage1

[Lab news] Hannes and Lucas on a ‘genetic’ road trip

18 December 2019. Hannes and Lucas just returned from a spontaneous road trip to visit our good friends and collaborators at the University of Quebec in Rimouski (UQAR), Canada. We drove for over 10 hours (one-way) through snowstorms and icy voids to meet with Prof. Dominique Robert, who had collected sand lance samples from the Gulf of St. Lawrence and from Nova Scotia to be included in our new genomic study on the population connectivity of this species. Hannes gave a talk about our sand lance work and we saw a new institute in a new place, while frantically trying to stay warm amidst the brutal cold. Seeing the St. Lawrence in its icy, majestic beauty was a truly amazing experience.
Afterwards, we drove back through Maine and then repeated the fin-clipping of samples in Scituate at the Stellwagen Bank National Marine Sanctuary office, so we now have almost all samples in hand to start the DNA extraction and sequencing.
We are excited for the next steps!
Genomic-study-sample-overview

Sand lance samples to be included in the genomic study

StLawrence-Rimouski

Rimouski on the south shore of the mighty and icy St. Lawrence River on 12/13/19

lj-corinne-hb-rimouski

Lucas and Hannes listened to Corinne Burns talking about her PhD research at UQAR on 16 Dec 2019

hb-UQAR-talk

Hannes gave a talk about sand lance research at UConn

StLawrence-Rimouski-ice

The icy beauty of the St. Lawrence River

StLawrence-against-the-sun

Sun glistening on the ice on the banks of the St. Lawrence River on 16 Dec 2019

I-91-Vermont

Snow storm on the I91 in Vermont on 15 Dec 2019

snowstorm-night

Driving back through Maine on 17 Dec 2019 ... 6h of snowstorm

I-91-Vermont

Sand lance sample thawing to be fin-clipped

snowstorm-night

Hannes and Lucas fin-clipping specimens in the Stellwagen Bank NMS office in Scituate on 18 Dec 2019

[New Publication] MEPS publishes Julie’s Ms research on silverside otoliths

12 December 2019. We are happy to announce that Marine Ecology Progress Series just published our latest paper on Atlantic silversides, but this time not an experimental but a field study! During her time in our lab, Julie Pringle investigated the otolith microstructure of young-of-year silversides, finding intriguing patterns about differential growth in males and females that likely result in sex-selective survival during their growing season. Congratulations, Julie, well done!


Pringle, J.W. and Baumann, H. (2019) Otolith-based growth reconstructions in young-of-year Atlantic silversides (Menidia menidia) and their implications for sex-selective survival. Marine Ecology Progress Series 632:193-204


Fig03---temp-hatch-spawning-mismatch
This graph shows reconstructed hatch distributions of male and female Atlantic silversides sampled in fall 2015. Counting daily otolith increments, young-of-year fish caught in October could be reliably aged, whereas those from November and December where likely underaged because water temperatures had already decreased below their growth threshold. This graph compbines previous knowledge, environmental monitoring and results of otolith microstructure analysis.

From the abstract:

“We examined the utility of otolith microstructure analysis in young-of-year (YoY) Atlantic silversides Menidia menidia, an important annual forage fish species along the North American Atlantic coast. We first compared the known hatch window of a local population (Long Island Sound, USA) to otolith-derived hatch distributions, finding that YoY collected in October were reliably aged whereas survivors from November and December were progressively under- aged, likely due to the onset of winter ring formation. In all collections, males outnumbered fe- males, and both sexes had bimodal size distributions. However, while small and large females were almost evenly represented (~60 and ~40%, respectively), over 94% of all males belonged to the small size group. We then examined increment widths as proxies for somatic growth, which suggested that bimodal size distributions resulted from 2 distinct slow- and fast-growing YoY phe- notypes. Length back-calculations of October YoY confirmed this, because fast- and slow-growing phenotypes arose within common bi-weekly hatch intervals. We concluded that the partial sexual size dimorphism in this population resulted largely from sex-specific growth differences and not primarily from earlier female than male hatch dates, as predicted by the well-studied phenome- non of temperature-dependent sex determination (TSD) in this species. Furthermore, observed sex ratios were considerably less male-biased than reconstructed thermal histories and published laboratory TSD values predicted. Assuming that selective mortality is generally biased against slower growing individuals, this process would predominantly remove male silversides from the population and explain the more balanced sex ratios at the end of the growing season.”


[New Publication] Conservation Physiology publishes our first sand lance paper!

21 November 2019. We are excited to announce the Chris Murray‘s paper on the unusual, high sensitivity of early life Northern sand lance to acidification and warming has just been published in the journal of Conservation Physiology! This is the first publication of our extensive work on this enigmatic species.

Baumann-sandlance-470x504
Sand lance species play a key ecological role in most temperate to polar shelf ecosystems of the northern hemisphere, but they have remained unstudied with respect to their sensitivity to predicted future CO2 levels in the ocean. For the past three years (2016 – 2018), we have sampled and spawned with northern sand lance (Ammodytes dubius) from Stellwagen Bank National Marine Sanctuary and subsequently reared their embryos under factorial CO2 x temperature conditions to hatch and early larval stages. Our results were striking, in all years, high CO2 conditions severely reduced embryo survival up to 20-fold over controls, with strong synergistic reductions under combined high CO2 and temperature conditions. High CO2 also delayed hatching, reduced remaining endogenous energy reserves at hatch, and in combination with higher temperatures, reduced embryonic growth.

Indeed, given the observed effect sizes, northern sand lance might be the most CO2 sensitive fish species tested to date.


[Lab News] Chris Murray starts his post-doc at University of Washington

Chris-Murray

15 August 2019. The Baumann lab is happy to announce that Chris Murray has started his new chapter of life and science at the west coast with the University of Washington. Congrats Chris, we know you will do great!

Chris started his PhD at UConn/Avery Point in September 2014, after finishing his MS in May 2014 at Stony Brook University, NY. While building on his experience in ocean acidification research, for his PhD he studyied multi-stressor effects of OA and hypoxia on coastal marine fishes. He had an outstanding part in designing and building our factorial larval rearing system ("Larval city") in UConn Rankin Seawater lab. The system allows up to nine independent, static or fluctuating CO2 x O2 environments simultaneously. It has been in full use during spring and summer months of the past four years.

After a phenomenally dedicated four years, Chris defended his PhD in December 2018 and recently graduated with this PhD from UConn.

His thesis titled An experimental evaluation of the sensitivity of coastal marine fishers acidification, hypoxia, and warming

is publicly available at the OpenCommons Site of the UConn Library.


Four recent publications of Chris:


Check out some footage of Chris and his lab mates over the years below!

[Lab news] Deanna Elliott completes her NSF-REU project

10 August 2019. Deanna Elliott from Arizona State University has just successfully completed her summer research project as our third NSF-REU student. For her REU-project she reared Atlantic silverside larvae under different feeding regimes to create fish of different body sizes and then analyzed them for trace levels of mercury in their tissue. She tested the hypothesis that mercury concentrations in fish can be used as a proxy for ingestion rates, which are important to trophic ecosystem models to perform better.

Here’s what Deanna had to say about her REU research experience:

This summer, I spent 10 weeks in the Baumann Evolutionary Fish Ecology lab and had a blast! The entire lab was incredibly welcoming, and made me feel at home immediately. We jumped right into my project and I had so many new experiences, it was almost overwhelming. We went seining for silversides in Mumford Cove, fertilized fish eggs… I became a Fish Mommy for the first time, rearing approximately 500 juvenile silversides for five weeks—I had never even had a fish tank before! I also got valuable experience in the chemistry lab, analyzing the mercury content of my Fish Babies. I felt very welcomed and received a lot of encouragement on my project and the presentation I had to give at the end of the program. Hannes and Zosia especially made me feel appreciated and supported, and that made all the difference in my experience with UCONN’s marine biology REU.

Check out some of the impressions from Deanna’s time at UConn. Great job, Deanna!


Deanna-farewell

[Lab news] NSF-REU student Deanna Elliott joins the Baumann lab

Deanna-Elliott
Deanna Elliott is a junior at Arizona State University who has joined the Baumann lab in summer 2019 as our third NSF-REU student. Deanna has experimented with locusts before, but now strives to become an expert fish rearer. Her project will rear Atlantic silverside larvae under different feeding regimes to create fish of different body sizes and then analyze the these fish for trace levels of mercury in their tissue. She will test the hypothesis that mercury concentrations in fish can be used as a proxy for ingestion rates, which are important to improve trophic ecosystem models. Welcome, Deanna!


[Atlantic silverside, Menidia menidia, mercury, ingestion rates]
dbellio2@asu.edu


An early brainstorming sketch on the whiteboard, outlining Deanna’s REU experiment
Fertilizing
Deanna starts her REU experiment by fertilizing strip-spawned silverside eggs