This research feature makes the case for multistressor research to a broad general audience and introduces our NSF project and its participants. Download the feature by clicking on the pictures or the link below.
Field work
[Research news] Are sand lance embryos particularly sensitive to high CO2?
On this dimly lit November afternoon, rain mercilessly drenched scientists and crew on board the R/V Auk as it slowly navigated the waters of Stellwagen Bank. A world like a wet sponge. Sky and ocean, indistinguishable.
Thanksgiving, the next day.
Despite the circumstances, the team’s mood was nothing short of elated. Our small beam trawl had just spilled hundreds of silvery fish on deck, wriggling like eels. They were Northern sand lance (Ammodytes dubius).
Running ripe adults.
Spawning.
Apparently, they like Thanksgiving, too.
—————
As the ship docked back in the Scituate, Mass., harbor that day, the rain thinned to hazy darkness.
“Let’s get a coffee and then on the road,” mumbled Chris, who led the team, “the real work of the experiments has just begun.”
Sand lance have a few interesting and rare characteristics. They alternate between schooling and foraging in the upper water column and extended periods of being almost completely buried in sand. For that, they rely on sand of a particular grain size and with very little organic content. It’s the kind of sand that defines large areas of the Stellwagen Bank.
Surprisingly little is known about the ecology and ecosystem importance of this sand lance species, although research on its European relatives (A. tobianus, A. marinus) is more advanced. In particular, experiments on early life stages of Northern sand lance have been lacking, save for some pioneering work on rearing methods of the related A. americanus (Smigielski et al. 1984). One question that was of particular interest to our lab involved the potential sensitivity of this fish species to carbon dioxide (CO2). That’s due to two other interesting and rare characteristics of sand lance. They spawn in late fall and winter in cold (and still cooling) waters, which is why their eggs and larvae develop extremely slow compared to other, more typical spring and summer spawning species. In addition, the species is found not in nearshore, but offshore coastal waters, where smaller seasonal and daily CO2 fluctuations more closely resemble oceanic conditions. Could sand lance offspring be particularly sensitive to higher levels of oceanic carbon dioxide predicted during the next 100 to 300 years as climate change effects intensify?
Our experiments are still ongoing, and rearing protocols are being improved.
The preliminary findings, however, are stunning. Survival to hatch was dramatically reduced under elevated and high compared to baseline CO2 conditions. It was severely lowered at higher (10°C or 50°F) compared to lower temperatures (5°C or 41°F). Our second experiment this year appears to repeat this pattern. If these results continue, that would mean sand lance is one of the most CO2-sensitive species studied to date.
General interest in sand lance goes beyond its sensitivity to carbon dioxide. Given the species importance for the ecosystem and coastal economy, there are now increasing efforts to better understand sand lance feeding ecology, distribution and relationship to the rest of the food web. In this regard, funding of our project by the Northeast Sea Grant Consortium proved prescient and a seed for subsequent grants from MIT Sea Grant and the Bureau of Energy Management (BOEM) to continue the work. Surely, the groundswell of interest in sand lance is commensurate with its importance and will enable insights into better management strategies for sensitive ecosystems like those along the U.S. Atlantic coast.

Collaborators on this project are: D. Wiley of the National Oceanic and Atmospheric Administration-Stellwagen Bank National Marine Sanctuary; P. Valentine of the U.S. Geological Survey; and S. Gallagher and J. Llopiz, both of the Woods Hole Oceanographic Institution.
[Field work] To Georgia and back in 48h – a special road trip for science
By H.B.
Somewhere after Richmond, VA, the sun sets and traffic on the I-95 begins moving better. At long last. The four people in the burgundy Dogde Challenger have all already cycled through their driving shifts once and dare an impatient glance at the time left. Still more than 8 hours. More than 8 hours to reach this very special location at the Atlantic coast – Jekyll Island, Georgia. In the trunk of the car a jumble of coolers and a beach seine, buckets, air pumps, and hoses topped with the crumpled witnesses of roadside dining. This is no ordinary road trip.
We, that are Aryn and Nicholas from the Therkildsen lab of Conservation Genetics lab at Cornell University and James and Hannes from the Fish Ecology Lab here at UConn; we went on this road trip to catch live, spawning ripe Atlantic silversides from the southern edge of the species distribution. We then intended to bring these fish back to UConn alive, sample another population from the south shore of Long Island (Patchogue, NY) and produce genetic crosses of these populations.
The broad goal of our expanding collaborative efforts with our geneticist friends from Cornell is the creation of an annotated genome of this species, which will be an important milestone in deepening or understanding of the molecular and genetic responses of organisms to local selection regimes and marine climate change. Given the Atlantic silverside’s ecological importance as an abundant forage fish along the American east coast and it’s rich history as a model organism in evolutionary and ecological studies, the annotated genome is the next logical step.
Even at hindsight, the plan still seems a little insane. But it worked. We indeed managed to catch spawning silversides at the Georgia site and then transported them immediately back to our Rankin Lab, which involved another 17 hours of driving back. After securing samples from Patchogue, we indeed managed to cross single parents from each site to produce full-sib crosses that will later be used to produce what geneticist call a linkage map. Other across and within-population crosses will be used to study gene expression at two different temperatures or raise adults for producing an F2 generation.
The silverside larvae are currently well, feeding, and growing up nicely. We all cross fingers for this enterprise to end in good samples and a step forward for genetic studies on a marine fish.
[Field work] Our sand lance research in the news
NOAA sanctuaries just published a little blurb online, introducing sand lance and it’s importance to the Stellwagen Bank National Marine Sanctuary, including a small section on the current research efforts funded by NOAA Regional SeaGrant.
“To that end, the team is collaborating with scientists from the University of Connecticut (UConn). UConn study members transport live-caught sanctuary sand lance to their lab, where further generations of sand lance are raised. The resulting larval sand lance are raised in high-tech rearing facilities that can be adjusted to mimic future ocean conditions.”
The entire article can be accessed by clicking on the link below
http://sanctuaries.noaa.gov/news/jan17/sand-lance-stellwagen-bank.html
[Field work] Sand lance spawning season has started
4th time’s the charm: sampling spawning ripe sand lance on Stellwagen Bank
It seemed an ambitious dream not too long ago, but now we’re happy report that we’ve started an experiment on sand lance embryos in our lab. Thanks to Chris Murray, David Wiley, Mike Thompson, captain Steve and his deckhand Matt for the successful trip!
Check out some footage of the trip and the beam trawl operation on board of captain Steve’s fishing vessel
[Field work] Catching sand lance on Stellwagen Bank
On 27 October 2016, Hannes, Chris and Julie joined researchers from the Stellwagen Bank National Marine Sanctuary (David Wiley, Anne-Marie Runfola, Brad Cabe, Michael Thompson), the USGS (Page Valentine, Dann Blackwood) and the crew of the R/V Auk (Dave Slocum, James Stasinos) to embark on our first of five total sampling missions in this enigmatic marine habitat. Our goal, catching live Northern sand lance, Ammodytes dubius, the so critical forage fish species that is referred to as the “backbone of the sanctuary”, because all kinds of marine predators from whales to tuna to seabirds gather on the bank to feast on them.
Our renewed efforts are part of our recently funded NOAA Regional SeaGrant Project to investigate the effects of ocean warming, acidification and low oxygen on sand lance early life stages.
As before, we first started by deploying a Seaboss sediment grab, which allows our colleagues from the USGS to characterize sediment types in association with the occurrence of sand lance. In addition, however, we brought a small beam trawl along for the first time to find out, whether we could more effectively catch sand lance and then transport them live to our seawater facility at UConn Avery Point. We are happy report that the efforts by all have paid off and that there are now ~ 180 adult ripening sand lance swimming in our tanks. Thanks all, see you again for the second survey in a few weeks!
Check out the video below, made from clips of no less than five different GoPro’s (if you listen carefully, around 2:40 into the clip you’ll hear the singing of some nearby humpback whales):
[Opportunity] Summer Undergraduate Research Fund (SURF)
Seasonal dynamics in Atlantic Silverside abundance, spawning, and offspring sensitivity to low pH and oxygen
The Summer Undergraduate Research Fund (SURF) offers a summer stipend of up to $3,500 + $500 research. The Evolutionary Fish Ecology Lab offers a variety of suitable topics for undergraduates to work on.
Deadline for applications is January, 20th 2017.
How to apply: http://ugradresearch.uconn.edu/surf/#apply
[Lab news] Jake participates in the fall 2016 Massachusetts Bottom Trawl Survey

NOAA announces funding for our research on sand lance
NOAA and Sea Grant fund $800,000 in research to understand effects of ocean changes on iconic Northeast marine life
The Ocean & Atmospheric Research program (OAR) of NOAA and Sea Grant just announced the winners of its most recent round of research funding to better understand the consequences of ocean warming and acidification on key marine resources in U.S. Northeast coastal waters. We are happy and proud that our proposed work on the climate sensitivity of Northern sand lance (Ammodytes dubius) was one of the four projects selected for funding. This is particularly good news for Chris Murray, who for his PhD can now expand his experimental rearing expertise to this important species.
This work will be conducted collaboratively with colleagues from NOAA (David Wiley), USGS (Page Valentine), Boston University (Les Kaufman), and Woods Hole Oceanographic Institution (Scott Gallager).
You can read the official announcement as it appeared on 6 September 2016 on NOAA’s News site.

[Collaboration] Nina and Aryn visit from Cornell University
On 19-20 July, our lab temporarily transformed into a genetics laboratory, as Nina Therkildsen and her post-doc Aryn Pierce Wilder visited us from Cornell University (Therkildsen Lab). Their lab also shares the fascination for the Atlantic silverside as a model organism and has set out to eventually assemble the fully annotated genome of this species.
During their visit, they could accompany us for our bi-weekly beach seining in Mumford Cove, where we collected juveniles born this year as well as the last few spawning ripe adults at the end of the season. It was a great summer morning and fun for everyone.
In the lab, Nina and Aryn went on dissecting different types of tissue (muscle, liver, spleen, gills, fins) from a few specimens destined for genetic analyses. In the Rankin lab, we tried a novel procedure on this species, i.e., making haploid embryos by fertilizing strip-spawned eggs with sperm that was UV-radiated before.
Thank you for visiting, Nina and Aryn, and we will see you back in fall, when Nina will give a Friday seminar on 11 November 2016. We’re looking forward to what she will have to report!