Media

Kelli Mosca presents Master thesis research on Atlantic Sturgeon

Kelli-Mosca---sturgeon_defense

21 March 2022. Today, Baumann lab graduate student Kelli Mosca presented her Masters thesis entitled "Atlantic sturgeon (Acipenser oxyrinchus) Growth and Habitat Use in the Connecticut River and Long Island Sound". She did a marvelous job summarizing the multifaceted findings on age and growth of Atlantic sturgeon in the eastern Long Island Sound and the Connecticut River, their movement patterns based on analyses of acoustic telemetry data, while evaluating the evidence for indications that Atlantic sturgeon may utilize the Connecticut River again for spawning.

Kelli was an inspirational and cherished member of the Baumann lab, who literally mastered the challenges of being a 'whole-pandemic' Master student. Her dedication and continued work for CTDEEP were awarded by an offer for a CTDEEP Fishery Biologist I position, which she has wholeheartedly accepted. Congratulations Kelli, and all the best for the next steps in your career!

The UConn Department of Marine Sciences
Presents a Master’s Thesis Presentation by

Kelli Mosca
B.S., University of New Haven, 2017

12:00 p.m., Monday, March 21, 2022
Lowell Weicker Building, Seminar Room 103 or Via WebEx

Atlantic sturgeon (Acipenser oxyrinchus) Growth and Habitat Use in the Connecticut River and Long Island Sound

Atlantic sturgeon (ATS, Acipenser oxyrinchus) are long-lived, anadromous, and endangered fish with a wide geographical distribution along the east coast of North America. Historically known to spawn in numerous rivers, many spawning runs ended due to intense fishing pressure and habitat obstruction in the 19th and 20th centuries. This was thought to be true for the longest river in the US Northeast, the Connecticut River, until pre-migratory ATS juveniles appeared in the river in 2014. Here, I use a long-term archive of fin spine samples and three years of acoustically tagged ATS to generally expand knowledge about the ATS using the CT River and LIS, and specifically examine these empirical data for potential evidence of re-emergent spawning behavior. I analyzed 301 sections of ATS fins spines collected from 1988-2021 to determine age, annuli widths, and thus population- and individual-based growth patterns. I found that the vast majority of ATS in my study area were juveniles and sub-adults with an average (± SD) age of 7.5 ± 3.1 years and an average (± SD) length of 101 ± 26 cm. The weighed, population-based Von Bertalanffy growth model estimated a K of 0.08 (95% CL, 0.01/0.17) and a L∞ of 171.2 cm (95% CI, 129/547 cm), the latter likely showing signs of missing large adults. K and L∞ distributions showed no sign of sex-specific multi-modality. Longitudinal length back-calculations revealed the selective disappearance of faster growing phenotypes (at ages 2-6) with increasing age at capture, which is clear evidence for Lee’s phenomenon. Acoustic detections of telemetered Atlantic sturgeon (2019-2021) revealed that most sturgeon in 2019 and 2020 utilized the Lower CT River (brackish water), whereas in 2021 detections were highest in LIS (salt water). Detections in the Upper CT River (freshwater) were common but much less dense across years, with 53%, 69% and 45% of ATS detected in the Upper CT River at some point in each season (2019-2021 respectively). I found a positive relationship of fish proportion in the CT River with temperature, but an inverse relationship of fish proportion in the CT River with river discharge. On average, the arrival of fish in the CT River occurred in June, when water temperatures were 17.5 - 24.9 ºC, while the departure from the CT River generally occurred in October, coinciding with river temperatures of 15.2 - 20.4 ºC. Some of the fish utilizing the Upper CT River made directed movements to a potential spawning ground at Portland, CT (river km 47). However, these movements occurred in mid- to late August (12th -23rd), which is inconsistent with the typical spring timing of ATS spawning runs in northern populations. Fall spawning runs are only known for southern ATS populations. In addition to timing, ATS sizes in the Upper CT River also do not support spawning behavior, because fish of all sizes (72 – 154 cm TL) and ages (3-15) visited the Portland area for 0.25 – 63.25 days. I conclude that neither age nor telemetry data support the re-emergence of the CT River as an ATS spawning ground. Future work will benefit from a more even sampling of gear sizes and should examine possible explanations for ATS freshwater utilization including feeding and individual preferences.

Major Advisor: Hannes Baumann
Associate Advisor: Eric Schultz
Associate Advisor: Tom Savoy
Associate Advisor: Jacque Benway
Associate Advisor: Catherine Matassa

Hannes gives DMS Friday seminar on sand lance ecology

4 March 2022. Hannes was the invited speaker at today's Friday seminar of the Department of Marine Sciences. His talk gave an overview of the research highlights of our multi-disciplinary and multi-institutional efforts to better understand basic ecological facts, population connectivity & structure, and the unusually high CO2-sensitivity of sand lance embryos. The remotely given presentation was attended by 62 people, some of which listened in from as far away as Norway!

The talk was recorded and can be accessed via the public link below.


The unusual ecology and climate sensitivity of sand lance, a key forage fish on the Northwest-Atlantic Shelf

No matter how you look at these small, slender-bodied fishes that at times live buried in sediment or emerge as dense pelagic schools, northern sand lance (Ammodytes dubius) easily awe even the most hard-to-impress scientist or naturalist. Their unusual behavior, patchy occurrence, and reproductive timing are paralleled by their extraordinary importance as forage fish that sustain well-known hotspots of iconic predators (cod, tuna, sharks, seabirds, whales) all across the Northwest Atlantic shelf. And yet, despite their recognized role as the ‘backbone’ of many shelf ecosystems, we still don’t understand many basic aspects of sand lance ecology, population structure and their vulnerability to manmade climate change. Over the past years, our lab has been working alongside other US and Canadian research groups on multiple sand lance projects that have produced stunning new insights into these enigmatic fish. This seminar will outline some of the highlights. We discovered that the seasonal growth of these fish relies heavily on the lipid-rich copepod Calanus finmarchicus and showed that after a dormancy period in summer they spawn on Stellwagen Bank for just a brief period at the end of fall. To resolve questions of connectivity between sand lance areas, we performed large-scale Lagrangian drift simulations that suggested areas of high, low and negligible retention of sand lance offspring and showed overlaps with planned offshore wind lease areas. A large collaborative effort succeeded in obtaining specimens from across the entire distributional range (Greenland to Mid-Atlantic Bight), and subsequent whole genome sequencing newly revealed a stark genomic differentiation between northern and southern population clusters. Last, we performed multiple years of rearing experiments on embryos that consistently showed an unusual sensitivity of sand lance to future, high CO2 oceans. When coupled with regional, end-of-century pCO2 projections we estimate that rising CO2 levels alone could reduce sand lance hatching success to 71% in 2100 relative to today. Warming, acidification, and habitat exploitation therefore emerge as key factors lining up against the future productivity of this forage fish, which is so critically important across Northwest-Atlantic shelf ecosystems.


Video: A November day on Stellwagen Bank

44th Larval Fish Conference held virtually 24-26 June

Groton, CT 24-26 June 2021. The long awaited and anxiously prepared virtual 44th Larval Fish Conference was held, featuring more than 240 participants from 28 countries. 58 scientific talks, including 3 keynote lectures were given via Cisco’s WebEx platform, whereas networking activities such as poster presentations, ‘Meet the Speaker’ events, and Mentor hours used the innovative Gatherly platform. The technology was working out well, the preparation paid off, and delegates were overall enthusiastic about this virtual alternative, which was forced on us by Covid-19, but may have shown us new ways and concepts to broaden the societies reach and equality.

The post-conference website is housed at https://lfc44.marinesciences.uconn.edu

Special thanks go to the scientific steering committee Eric Schultz, Jacqueline Webb, and Paul Anderson. Lauren Schaller, Anne Hill, Harley Erickson, and Kate Copeland from UConn’s conference services did a great job as well preparing and running parts of the events. Support came from NOAA’s Northeast Fisheries Science Center.


Our sandlance work featured in the CapeCodFishermen

Reposted from TheCapeCodFishermen, April 28th 2021

By David N. Wiley

Bluefin tuna and striped bass crash through the waves. Seabirds wheel overhead and plunge into the water. Gape-mouthed whales rise from below. Schools of cod and dogfish hide below the surface.

While the convergence of such diverse sea life might seem accidental, those in the know thank a small, slender fish called a sand eel for the bonanza.

Also known as sand lance, these three-to-six inch forage fish are a main food source for many of the top predators in the Gulf of Maine and on Georges Bank, including some of the most commercially important species.

As their name implies, sand lance are tied to sand habitat, but not just any sand will do. To avoid predators, sand lance spend most of the night and parts of the day buried. When disturbed, they rocket out of the bottom, then dive head first and at full speed back into the sand.

As a result, their sand of choice has to be coarse enough to hold oxygen for the fish to “breathe” while buried, but soft enough to allow high-speed body penetration. One of the reasons Cape Cod is their Mecca is a band of perfect sand stretching from Stellwagen Bank along the backside of Cape Cod, past Chatham and up through Georges Bank. Whether you are a fisherman, whale watcher or seabird enthusiast, it’s this band of sand, and the sand lance that inhabit it, that makes the Cape special.

Sand and sand lance are the backbone of Stellwagen Bank National Marine Sanctuary, responsible for it being one of the top places in the United States for viewing marine life, and a centuries old, highly productive fishing ground. Yet while fishermen appreciate the importance of sand lance, little is known about their biology and most of the world does not know they exist.

To remedy the situation, a team of researchers led by scientists from Stellwagen Bank National Marine Sanctuary with partners from Boston University, Center for Coastal Studies, University of Connecticut, U.S. Geological Survey and Woods Hole Oceanographic Institution have been studying the forage fish to determine its importance and unlock some of its secrets.

One of the project’s first goals was to identify the sand lance spawning season. Using a specially designed and permitted small-mesh trawl, fished from Steve Welch’s F/V Mystic or NOAA’s R/V Auk, the team captured and examined sand lance. Thought to spawn from late fall through winter, several years of work demonstrated that sand lance on Stellwagen Bank spawn in a very narrow window at the end of November. Eggs are deposited on the seafloor and hatch after approximately six weeks.

Then things get interesting. Once hatched, sand lance are tiny, free-floating larvae for two to three months. Given this long free-floating period and the currents flowing over Stellwagen Bank, many sand lance born on the bank cannot stay there. So where do they come from and where do their offspring go?

To answer this question, the team used hydrographic modeling to backtrack to where free floating particles (like larval sand lance) would have originated prior to their sand settlement in March or April, and where drifting particles would end up two or three months after hatching.

It appears that larval sand lance settling on Stellwagen originate off the coast of Maine; years of highest sand lance abundance correspond to conditions that would have transported additional larval sand lance from as far north as Nova Scotia. The same modeling indicated that larval sand lance originating on Stellwagen Bank transport south to the Great South Channel and Nantucket Shoals (but not Georges Bank). In some years, currents moved them as far as New Jersey.

This is just another example of the interconnected world that creates a productive marine environment. Since few sand lance in the study lived past three years, the dependence on shifting currents to populate the bank could be one thing responsible for boom and bust years typical of sand lance abundance. The team is currently examining genetics of sand lance taken from throughout the Gulf of Maine, the mid-Atlantic, and eastern Canada, to gain additional insight into population structure.

Do boom-bust years influence the distribution and abundance of predators? The team investigated the association of sand lance with humpback whales and great shearwater seabirds by placing satellite tags on both species to track their movements.

Throughout the Gulf of Maine, tracking revealed that both species spend the vast majority of their time over sand lance habitat, and DNA from fecal shearwater samples showed sand lance to be the bird’s main prey. Surveys in Stellwagen also demonstrated a high co-occurrence of sand lance, humpback whales and great shearwaters.

Sand lance feed primarily from February to July, mostly on Calanus finmarchicus copepods. They stop feeding from August through October, with low levels of feeding from the end of November to January. Body growth and fat content show similar trends, with length and fat stores increasing from February to July. After July, the fish retreat to bury in the sandy bottom, conserving energy for spawning.

The team then turned its attention to the future of the valuable fish, something of extreme importance to fishermen. Ripe fish captured in November were strip-spawned on board the boats and transported to Connecticut, where eggs and larvae were raised in special tanks that allowed temperature and acidity to be manipulated to mimic future ocean conditions under climate change. Increased temperature and acidity had a dramatic negative impact on larval survival. According to Dr. Hannes Baumann, whose lab led the work, sand lance may be unusually sensitive to ocean acidification.

The future of sand lance was also a focus of team members Joel Llopiz and Justin Suca from Woods Hole Oceanographic Institution. They came to some worrisome conclusions.

The abundance of tiny C. finmarchicus copepods directly influences sand lance health: Abundant C. finmarchicus led to good parental condition and high reproductive success, while low numbers resulted in poor parental condition and poor reproductive success. Scientists have suggested climate change scenarios in the Gulf of Maine will lead to reduced abundance of this critical copepod resource. Adding to the problem was their finding that warm slope water coming through the Northeast Channel north of Georges Bank led to the death of overwintering reproductive adults.

With the Gulf of Maine warming faster than 99 percent of the world’s oceans, there is concern about the future of sand lance and its potential impact to the productivity of the Gulf of Maine, Georges Bank and other areas. While states with fisheries and other marine resources supported by sand lance cannot solve climate change issues, they can work to make sand lance more resilient to climate change. One way is to eliminate as many non-climate stressors as possible.

For example, in 2020 Massachusetts promulgated a rule limiting daily sand lance landings to 200 pounds. Rhode Island followed suit in 2021. These rules were designed to discourage the development of a commercial fishery for the species, such as the huge industrial fishery in Europe’s North Sea.

Since a commercial sand lance fishery does not currently exist here, adopting this rule by other states would be an easy, proactive way to make our waters, and the people who depend on them, more resistant to climate change disruption.

(Dr. David N. Wiley is the Research Ecologist for Stellwagen Bank National Marine Santuary. Funding for the project was provided by the Bureau of Ocean Energy Management, The Volgenau Foundation, Northeast and Woods Hole Sea Grant, International Fund for Animal Welfare, Stellwagen Bank National Marine Sanctuary and the National Marine Sanctuary Foundation. Dan Blackwood, Dr. Gavin Fay, Peter Hong, Dr. Les Kaufmann, Kevin Powers, Dr. Jooke Robbins, Dr. Tammy Silva, Mike Thompson, and Dr. Page Valentine contributed to the study)

Baumann-sandlance-470x504

‘Hooked on OA’ – Hannes talks about fish CO2 sensitivity to recreational anglers

25 February 2021. The Mid-Atlantic Ocean Acidification Network (MACAN) organized a four-part webinar series on Ocean Acidification geared specifically towards recreational anglers and shellfish collectors in the Mid-Atlantic region. The series is called “Hooked on OA” and invited Hannes on this February Thursday to explain the state of OA science particularly for fishes. A big thanks to the organizers and the more than 50 people who participated in this webinar.

HookedonOA


If you missed it and are still interested, you can watch the Zoom webinar here:

[Lab news] Adult black sea bass arrive at UConn’s Rankin lab

Establishing a Black Sea Bass brood stock to study early life history effects of warming and acidification

Max-Zawell
Max Zavell

December 2020. We are happy to announce that as of a few weeks, we are now housing two brood stock populations of Black Sea Bass (Centropristis striata) at UConn's Department of Marine Sciences Rankin Seawater Lab. The adults will be reared for the next few months under contrasting CO2 regimes in 1000gal tanks each. After photoperiod manipulation and hormone-injection we plan to strip-spawn adult fish and test their offspring for their CO2 and temperature sensitivity. Black Sea Bass are rapidly increasing in abundance in New England Water and the Gulf of Maine, but research on early life stages is still lacking. PhD student Max Zavell meticulously taking care of these fish now.

Black-Sea-Bass-broodstock2020

Catch a glimpse of these beautiful animals below

Baby sturgeon in the Connecticut River!

Babysturgeon

Juvenile Atlantic sturgeon caught in June 2020 in the Connecticut River (photo: Jacque Benway, CTDEEP)

By Kelli Mosca.
3 July 2020. Atlantic sturgeon (Acipenser oxyrinchus) is an endangered, long-lived, anadromous fish that is found along the North American coast from the St. Lawrence River (Canada) to the St. John’s River (Florida). Historically, Atlantic sturgeon spawned in the Connecticut River, but until recently spawning populations were thought to be extirpated. In June 2020, a small, very young and therefore likely pre-migratory specimen (253mm) was captured by CTDEEP in the Connecticut River (above). This discovery is only the second after the first occurrence of small sturgeon in 2014! Together, this may be the beginning of a small Atlantic Sturgeon population rediscovering their long-lost spawning ground in the Connecticut River. CTDEEP and the Baumann Lab are working to find more fish of this size- and year class, and answer related questions about surgeon age and size and migration patterns. (CT SeaGrant project)

[Lab news] Hannes & colleagues organize a Virtual Town Hall

Banner5
23 June 2020. It’s been a remarkable day. A remarkable few months of preparation. But on this Tuesday in June, more than 250 people from all over the world logged in to a UConn WebEx Event organized by Hannes Baumann, Eric Schultz, Jacqueline Webb, Paul Anderson and Jon Hare. The event, billed as the “1st Virtual Larval Fish Science Town Hall” was of course a product of the strange and challenging times we live in right now. A consequence of almost a year of painstaking preparations for the 44th Larval Fish Conference in Mystic, CT … eclipsed by the COVID-19 pandemic that made having a physical science conference impossible.


Attendance-graph
Number of attendees per minute throughout the day. Science sessions were followed by 120-170 attendees worldwide.
Network Mentors

The Virtual Town Hall gave 16 speakers from around the world the opportunity to communicate their science, while providing a forum for the community to interact. The Early Career Committee of the AFS Early Life History Section contributed as well, organizing a round table discussion led by Kelsey Swieca with Chris Chambers, Jackie Webb, and Peter Konstantidinis. Individual networking meetings – although hobbled initially by technology – were held after the meeting between senior and early career researchers.

And best of all – more than 40 people participated in a picture contest, contributing stunning images of larval fish or larval fish science.

For more information, speaker bios’s, talk titles, abstracts and even some video please visit the event website lfc44.uconn.edu


Some of our personal favorites among the best larval fish picture submissions

A35---Bartick---Ribbonfish-fb-1-of-1
Mike Bartick | Ribbon fish
A32---Meldonian---Cyclopsetta-fimbriata-7-8-19-9932-final
Irene Middleton | A diver checks out a juvenile flying fish at the Poor Knights Islands in New Zealand
A32---Meldonian---Cyclopsetta-fimbriata-7-8-19-9932-final
Suzan Meldonian | Cyclopsetta fimbriata, photographed in situ along Gulf Stream Current, SE Florida
A25---Parkinson--29354-004-Molidae-A
Winner – Kerryn Parkinson | Mola sp – a larval sunfish collected off New South Wales, Australia.
A23---Monteiro---Tilefish_CNamiki
Gabriel Monteiro | Caulolatilus chrysops larvae cleared and stained. This specimen belongs to ColBIO USP biological collection.
A15---Walsh---larval-Bothus_20170615_photo-by-Har
Harvey Walsh | Bothus larvae sorted at sea from a bongo net tow collected during the summer of 2017 aboard the NOAA Ship Gordon Gunter.
A10---Murray---Pacific-Herring-embryo
Chris Murray | Wild Pacific herring spawn from Skagit Bay, WA (~72 h old). Note the flat edge of the egg where it was adhered to sea grass.
A05---Grande-H.-Acanthurus-coeruleus
Henrique Grande | Post-larval reef fish Acanthurus coeruleus Bloch & Schneider, 1801 collected in 2015 using light traps in the Bay of Tamandaré, Brazil.

[New Publication] IUCN published ocean deoxygenation report!

9 December 2019. During the COP25 summit in Madrid, the International Union for Conservation of Nature (IUCN) released its latest comprehensive report titled “Ocean deoxygenation: everyone’s problem” that compiles the current evidence for the ongoing, man-made decline in the oceans oxygen levels. The 588 page, 11 chapter wake-up call to these detrimental changes was produced by leading experts in the field. We are happy to announce that Hannes is one of the many authors of this document, co-authoring chapter 6 “Multiple stressors – forces that combine to worsen deoxygenation and its effects“.

From the executive summary:

“The equilibrium state of the ocean-atmosphere system has been perturbed these last few decades with the ocean becoming a source of oxygen for the atmosphere even though its oxygen inventory is only ~0.6% of that of the atmosphere. Different analyses conclude that the global ocean oxygen content has decreased by 1-2% since the middle of the 20th century. Global warming is expected to have contributed to this decrease, directly because the solubility of oxygen in warmer waters decreases, and indirectly through changes in the physical and biogeochemical dynamics.”

From the summary of chapter 6:

  • Human activities have altered not only the oxygen content of the coastal and open ocean, but also a variety of other physical, chemical and biological conditions that can have negative effects on physiological and ecological processes. As a result, marine systems are under intense and increasing pressure from multiple stressors.
  • The combined effects of ‘stressors’ can be greater than, less than, or different from the sum of each stressor alone, and there are large uncertainties surrounding their combined effects.
  • Warming, acidification, disease, and fisheries mortality are important common stressors that can have negative effects in combination with low oxygen.
  • Warming, deoxygenation, and acidification commonly co-occur because they share common causes. Increasing carbon dioxide (CO2) emissions simultaneously warm, deoxygenate, and acidify marine systems, and nutrient pollution increases the severity of deoxygenation and acidification.
  • A better understanding of the effects of multiple stressors on ocean ecosystems should improve the development of effective strategies to reduce the problem of deoxygenation and aid in identifying adaptive strategies to protect species and processes threatened by oxygen decline.
Baumann-IUCN-full

Chapter-6


Access the full report from IUCN.org

[Presentation] Callie presents research at the Graduate Climate Conference

Callie-Climate-Change-conference1
Callie presenting her poster to other graduate students
November 8, 2019. Callie Concannon joined other graduate students of the Department of Marine Sciences to present her thesis research at the Graduate Climate Conference in Woods Hole, MA. She presented a poster entitled “Long-term CO2 and temperature effects on fecundity and oocyte recruitment in the Atlantic silverside
Her preliminary findings can be summarized as:

Warmer, more acidic environments impact reproductive output in the Atlantic silverside


Callie-Climate-change-conference2
The participants of the Graduate Climate Change conference in November 2019

Callie-GCC2019-poster