Media

[New publication] Science publishes our silverside genetic study!

Fishing changes silverside genes
1 August 2019. We are overjoyed that our paper on genetic changes in experimental silverside populations subjected to strong size-selective fishing has just been published by Science!


Therkildsen, N.O., Wilder, A.P., Conover, D.O., Munch, S.B., Baumann, H., and Palumbi, S.R. (2019)
Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing
Science 365:487-490
Related perspective: Fishing for answers Science 365: 443-444 | Cornell Press release | UConn Press release


Over recent decades, many commercially harvested fish have grown slower and matured earlier, which can translate into lower yields. Scientists have long suspected that rapid evolutionary change in fish caused by intense harvest pressure is the culprit.

Now, for the first time, researchers have unraveled genome-wide changes that prompted by fisheries – changes that previously had been invisible, according to a study published in Science by a team of researchers including Hannes Baumann, UConn assistant professor of Marine Sciences, who collaborated with researchers at Cornell University, the University of Oregon, the National Marine Fisheries Service, and Stanford University.

In unprecedented detail, the study shows sweeping genetic changes and how quickly those changes occur in fish populations extensively harvested by humans, says Baumann.

“Most people think of evolution as a very slow process that unfolds over millennial time scales, but evolution can, in fact, happen very quickly,” said lead author Nina Overgaard Therkildsen, Cornell assistant professor of conservation genomics in the Department of Natural Resources.

Therkildsen-fig1
Observed shifts in adult size. Trends across generations in mean length at harvest (standardized as the difference from the mean of the control populations in each generation) ± the standard deviations in up-selected (blue shades), down-selected (yellow and orange shades), and control populations (green shades).

The all-pervasive human meddling in our planet’s affairs undeniably reached the genetic make-up of its organisms.
— Hannes Baumann, UConn.

In heavily exploited fish stocks, fishing almost always targets the largest individuals. “Slower-growing fish will be smaller and escape the nets better, thereby having a higher chance of passing their genes on to the next generations. This way, fishing can cause rapid evolutionary change in growth rates and other traits,” said Therkildsen. “We see many indications of this effect in wild fish stocks, but no one has known what the underlying genetic changes were.”

Therkildsen and her colleagues took advantage of an influential experiment published back in 2002. Six populations of Atlantic silversides, a fish that grows no bigger than 6 inches in length, had been subjected to intense harvesting in the lab. In two populations, the largest individuals were removed; in another two populations, the smallest individuals were removed; and in the final two populations, the fishing was random with respect to size.

After only four generations, these different harvest regimes had led to evolution of an almost two-fold difference in adult size between the groups. Therkildsen and her team sequenced the full genome of almost 900 of these fish to examine the DNA-level changes responsible for these striking shifts.

The team identified hundreds of different genes across the genome that changed consistently between populations selected for fast and slow growth. They also observed large linked-blocks of genes that changed in concert, dramatically shifting the frequencies of hundreds of genes all at the same time.

Surprisingly, these large shifts only happened in some of the populations, according to the new paper. This means that there were multiple genomic solutions for the fish in this experiment to get either larger or smaller.

“Some of these changes are easier to reverse than others, so to predict the impacts of fisheries-induced evolution, it is not enough to track growth rates alone, we need to monitor changes at the genomic level,” said Therkildsen.

When the experiment was originally conducted nearly two decades ago by co-authors David Conover, professor of biology at the University of Oregon, and Stephan Munch of the National Marine Fisheries Service, the tools to study the genomic basis of the rapid fisheries-induced evolution they observed were not available. Fortunately, Conover and Munch had the foresight to store the samples in a freezer, making it possible to now return – armed with modern DNA sequencing tools – and reveal the underlying genomic shifts.

Research like this can assess human impacts, and improve humanity’s understanding of “the speed, consequences and reversibility of complex adaptations as we continue to sculpt the evolutionary trajectories of the species around us,” Therkildsen said.

“What’s most fascinating about this is that life can find different genetic ways to achieve the same result. In this study, two experimental populations evolved smaller body size in response to the selective removal of the largest fish, which is what most trawl fisheries do. However, only by looking at the genetic level we demonstrated that these two experimental populations evolved via two completely different genetic paths,” says Baumann.

The good news for the Atlantic silversides is that the fisheries selection was able to tap into the large reservoir of genetic variation that exists across the natural range of this species from Florida into Canada, said Therkildsen: “That genetic bank fueled rapid adaptation in the face of strong fishing pressure. Similar responses may occur in response to climate-induced shifts in other species with large genetic variability.”

“Scientists have coined the term Anthropocene in recognition of the all-pervasive human alteration of the earth’s climate, oceans, and land. No matter how ‘pristine’ a piece of nature may look to us at first glance, examine it thoroughly enough and you will find a trace of human in it. Take a cup of water from the middle of Pacific Ocean and a handful of sand from a ‘pristine’ beach – and you will find little plastic particles under the microscope,” says Baumann. “The parallel to this study is that the all-pervasive human meddling in our planet’s affairs now undeniably reached the genetic make-up of its organisms. Today’s fishes may superficially look the same as always, but their genes are not. They bear witness to human alteration.”

In addition to Baumann, Therkildsen, Conover, and Munch, co-authors included former Cornell postdoctoral researcher Aryn P. Wilder, now a researcher at San Diego Zoo Institute for Conservation Research; and Stephen R. Palumbi, Stanford University.

This work was funded by the National Science Foundation.

[Lab news] Hannes, Chris and Emma at the 43rd Larval Fish Conference!

hotel-view_web


ChrisHannesEmma_web
Chris, Hannes, and Emma

CapFormentor3_web
Beautiful view from Mallorca’s most northern point, Cap Formentor

peterdominiquearildHannes_web
Peter Gronkjaer, Dominique Robert, Arild Folkvord, Hannes during the conference tour
25 May 2019. Hannes, Chris and Emma attended this years 43rd Annual Larval Fish Conference in Palma de Mallorca, Spain. The event was hosted by IMEDEA’s Ignacio Catalan and colleagues and was attended by more than 140 participants. As usual, the small but international make-up of the meeting and made it into a memorable event of science, networking and seed for potential future collaborations. While Chris reported on our past experiments on factorial CO2 by O2 effects on Atlantic silverside early life stages, Emma presented the latest findings on our silverside experiments using computer-controlled CO2 and O2 co-fluctuations.

Before and after the conference, there was also some time to explore the beautiful island of Mallorca with its breathtaking mountain scenery and turquoise coves.


Chris and Emma’s presented:

  • Murray, C.S., Cross, E.L., and Baumann H. A factorial evaluation of the combined effects of acidification and hypoxia in Atlantic silverside offspring. Talk.
  • Cross, E.L., Murray, C.S. and Baumann H.Diel and tidal cycles of CO2 and dissolved oxygen conditions provide physiological refuge to a coastal forage fish, Menidia menidia under acidification and hypoxia. Talk.

Lucas-Jones-gradCallie-Concannon
A special thanks to Lucas and Callie for holding the fort at home!

CaladesMoro
Cala des Moro

MarthaHannes
Martha Moyano and Hannes
Valdemossa_web
Valdemossa

CapFormentor2_web
Cap Formentor

[Lab news] Whole life cycle CO2 fish are getting sampled

18 April 2019. This Thursday was a long day in the Baumann lab, because we sampled and processed over 200 adult silversides from a unique experiment. These fish were fertilized in the lab and reared from eggs to adulthood under different temperatures and contrasting CO2 conditions. We are interested to see, if future ocean conditions have measurable effects on this species fecundity, growth, and oocyte characteristics. We also took tissue and genetic samples, with an effective line-up of hands, i.e., Hannes, Emma, Chris, Callie and Lucas.
Good teamwork all!


Silverside-teamwork-041819

[Media] WSHU public radio covers Project Oceanology story

tfsbluered
4 April 2019. Following the publication of our study on the Project Oceanology time-series in Marine Environmental Research and the subsequent article about it in TheConversation, today the story was featured by WSHU public radio, in Ron Ropiak’s show “The Full Story“.

Have a listen, how Hannes describes both the findings and the significance of the Project Oceanology time series.


Listen

[Research news] Live staining of silverside neuromasts at URI

By Emma Cross.

Neuromast01-heli
23 Juli 2018. Yesterday Hannes and Emma took a short road trip to the University of Rhode Island to visit Professor Jacqueline Webb’s lab to learn about in vivo fluorescent imaging.

This technique involves placing live fish in a fluorescent mitrochondrial stain for 5 minutes before imaging different areas of the fish under a dissecting microscope equipped with an epiflourescence light source. This allowed us to visualize small sense organs called neuromasts located in tubular canals in the head, trunk and tail, which form the fish sensory lateral line system used to detect water flows.


We are interested to see if high CO2 conditions affect these neuromasts in the Atlantic silverside, which could impact their critical schooling behaviors.

neuromast-emma-jackie
neuromast-hand

Take a look at some of the stunning images below! Thank you to Jackie and all the lab for a fun-filled day!

neuromast02-heli
neuromast-emma

[Lab news] Baumann and Dam labs at the Gordon Research Conference

GRC2018


WatervilleValley
The beautiful venue of the Waterville Valley Hotel in New Hampshire

OVH-GRCtalk
Hannes introduced the Ocean Variability Hypothesis

GRC2018-Phil-HB
Phil Munday and Hannes chatting along the beautiful hike of Cascade Path
19 July 2018. Members of the Baumann and Dam labs cherished the opportunity to participate in the Ocean Global Change Biology Gordon Research Conference in Waterville Valley, NH.

The particularly intimate format of the Gordon Research Conference was wonderfully conducive to listening to groundbreaking science in form of keynote lectures and posters and to network with colleagues from all over the world. While Hannes gave a keynote lecture about experimental progress in assessing fish sensitivity to marine climate change, Chris, Emma, Jimmy and Hans presented their research all throughout the week during the poster sessions. The beautiful setting of the conference in New Hampshire’s White Mountains and the relaxed atmosphere were all contributing to one of the most unique conference experiences all year.


Talks and posters presented:

  • Baumann H. Using experiments to assess the sensitivity of fish to marine climate change: progress and knowledge gaps. Invited keynote talk.
  • Murray, C.S., Wiley, D., and Baumann H. Sand lance offspring (Ammodytes dubius) show high sensitivity to combined climate stressors. Poster.
  • Cross, E.L., Peck, L., and Harper, E. Brachiopod resilience: thicker shells offset dissolution under future ocean acidification and warming. Poster.
  • Dam, H.G., DeMayo, J.A., Park, G., He, X., Finiguerra, M., Baumann H., and Pespeni, M. Rapid adaptation of a marine copepod to a greenhouse world. Poster.
  • DeMayo, J.A., Park, G., Norton, L., Finiguerra, M., Baumann H., and Dam, H.G. Costs of adaptation to a greenhouse world for the copepod, Acartia tonsa. Poster.

GRC-posters


Baumann-Damlab1
The Baumann & Dam lab at the GRC hike
BaumannDamlab2

grc_photo_2018

[Lab news] Baumann lab attends the Larval Fish Conference in Victoria

Victoria07


Emma-Cross
Sydney-Stark
Holding the fort at the Rankin lab were Emma and Sydney, who did an excellent job. Thank you guys!

Victoria08
The Delta Victoria Ocean Pointe Resort was the conference venue

Victoria10
Before the conference, we all attended a workshop on larval fish identification

https://www.fishersci.com/shop/products/fisherbrand-class-a-clear-glass-threaded-vials-attached-caps-pe-poly-seal-cone-liner-8/14955326
Whale-watching with Corinne, Julie & Chris
Here is how Julie experienced her first LFC:

Ever since attending the American Fisheries Society conference in 2014, I’ve wanted to go to another fish-focused conference. I was lucky enough to attend the 42nd annual Larval Fish Conference this year in Victoria, British Columbia, and it surpassed all my expectations. The week started off with a larval fish identification workshop where we got to learn techniques from renowned larval fish experts (and see some really cool fish larvae!). The talks were impressive and thought-provoking, providing many new ideas for research and how to give an engaging talk. My favorite part was meeting all the larval fish ecologists whose publications I’ve been reading for my thesis. I spent most of my evenings exploring Victoria with other grad students attending the conference and left with many new friends from institutes all over the world! The trip ended with a whale watch, where we saw a pod of 5 Orcas. Overall, the Larval Fish Conference was a great experience that I hope to someday attend again!


Oral presentations:

  • Pringle, J. and Baumann, H. Sex-specific growth and mortality patterns in juvenile Atlantic silversides (Menidia menidia) from Connecticut waters. Talk. 42nd Larval Fish Conference, Victoria, BC, Canada 24-28 June 2018
  • Murray, C.S., Wiley, D., and Baumann, H. Early life stages of the northern sand lance Ammodytes dubius show high sensitivity to acidification and warming in a CO2 × temperature factorial experiment. Talk. 42nd Larval Fish Conference, Victoria, BC, Canada 24-28 June 2018

Victoria09
Water taxi in Victoria

Victoria03
Old Victoria
Victoria02
Beyond this point …
Victoria05
Orca whale
Victoria04
Harbor front with Parliament building
Victoria06
Local celebrity, the one eyed seal

[Lab video] How a new silverside experiment starts

29 June 2018. A new experiment with Atlantic silversides (Menidia menidia) starts and as usual, it’s an all hand on deck operation. This time, we have Chris Tsang shadowing all of us and Emma professionally explaining the process.

Have a look for yourself!

[Lab news] Video of Mumford Cove probe swap

14 June 2018. Members of the Baumann and Mason lab went on a trip to Mumford Cove, today, and Chris Tsang went along with his GoPro. Thanks to Charlie, the skipper, the ride was smooth and a pleasure, a swapping our pH, Temperature, oxygen, and salinity sensor was successfully swapped with a new one recording for the next weeks in 30 minute intervals. Wes Hoffman from the Mason lab, collected zooplankton with a Bongo-net. Sydney Stark, our NSF-REU student this summer, came along just for the fun.

See the fun for yourself!