10 October 2017. Today, Chris, Emma, and Julie measured over 400 juvenile Atlantic silversides for their length and weight. This time, however, we did not euthanize the fish before, but successfully measured them while still alive, only a little drowsy from the mild anesthetic we administered before.
Click on the video below to have a look for yourself.
Congratulations all, for a job well done!
On 19-21 September 2017, Chris Murray and Hannes Baumann traveled to Fort Lauderdale, Florida, to attend the ICES (International Council for the Exploration of the Sea) Annual Science Conference in order to present our ongoing NSF and NOAA funded research on potential ocean acidification effects in Atlantic Silversides and Northern Sand lance. Due to Hurricane Irma, which had impacted all of Florida just a week earlier, it was a great relief that the conference could actually be successfully held.
Chris gave a talk and a poster during this session, which was well received and thus a worthwhile exposure for Chris and our lab’s research.
Murray, C. S. and Baumann H. 2017. Growth costs of high CO2 environments in a marine fish: importance of feeding methodology. Talk.
Murray, C. S., Wiley, D., and Baumann H. 2017. A preliminary study testing the effects of high CO2 on the early life stages of the northern sand lance Ammodytes dubius. Poster.
It’s the beginning of June, and in the Baumann lab that means: high time for experimental research on the Atlantic Silverside, the famous forage fish and important model species! This year, we have several major objectives; our NSF-sponsored research examines the sensitivity of offspring to the individual and combined effects of high CO2 and low oxygen (Chris Murray), while in collaboration with our colleagues from Cornell University we rear several families for genetic and transcriptomic studies. Elle Parks, our REU student just started her work on the effects of CO2 and temperature on the starvation resistance of silverside larvae. As always, the days when new experiments start are a group effort, where everybody including many volunteers help. Thanks to Peter Morenus (UConn) for the coming down for documenting the activities!
The Baumann lab, June 2017: from left to right; Isaiah Mayo, Julie Pringle, Chris Murray, Elle Parks, Hannes Baumann, Jacob Snyder, James Harrington + "Bear". (Photo: Peter Morenus, UConn)
Chris and Jake strip-spawning. (Photo: Peter Morenus, UConn)
Chris Murray inspects a screen with newly fertilized Atlantic Silverside embryos, prior to starting a new set of experiments. (Photo: Peter Morenus, UConn)
Screens with enumerated embryos are suspended in each rearing container using fishing line. (Photo: Peter Morenus, UConn)
On 9 June, Elle and Julie strip-spawn Atlantic silverside females into spawning dishes covered in window screen for eggs to attach. (Photo: Peter Morenus, UConn)
All adult silversides used to produce new offspring are getting measured and preserved. (Photo: Peter Morenus, UConn)
Hannes shows Elle Parks (REU 2017), how individual screen with enumerated embryos are suspended into the replicate rearing containers. (Photo: Peter Morenus, UConn)
On 9 June 2017, members of the Baumann lab all help to start a new set of experiments in the Rankin Lab at UConn Avery Point. From left to right: Julie Pringle, Hannes Baumann, Elle Parks, Jacob Snyder, James Harrington, Isaiah Mayo, Chris Murray). (Photo: Peter Morenus, UConn)
Hydrated, ready to be fertilized eggs extrude from a running ripe female Atlantic silverside when putting gentle pressure on the abdomen. (Photo: Peter Morenus, UConn)
NOAA sanctuaries just published a little blurb online, introducing sand lance and it’s importance to the Stellwagen Bank National Marine Sanctuary, including a small section on the current research efforts funded by NOAA Regional SeaGrant.
“To that end, the team is collaborating with scientists from the University of Connecticut (UConn). UConn study members transport live-caught sanctuary sand lance to their lab, where further generations of sand lance are raised. The resulting larval sand lance are raised in high-tech rearing facilities that can be adjusted to mimic future ocean conditions.”
4th time’s the charm: sampling spawning ripe sand lance on Stellwagen Bank
Early morning on 2 December 2016, we left Scituate, MA, for the forth time this year, heading towards Stellwagen Bank in search of spawning ripe Northern sand lance (Ammodytes dubius), a winter spawning forage fish of great importance to the Stellwagen Bank National Marine Sanctuary and the object of latest research efforts. While during the last three cruises in late October and November, we saw a progression of ripening in the specimens, up to now we didn’t actually find spawning ripe individuals. Today, though, things are different, and when the first sand lance appear in our beam trawl, we immediately know that today we’ve been at the right time and at the right place.
It seemed an ambitious dream not too long ago, but now we’re happy report that we’ve started an experiment on sand lance embryos in our lab. Thanks to Chris Murray, David Wiley, Mike Thompson, captain Steve and his deckhand Matt for the successful trip!
Check out some footage of the trip and the beam trawl operation on board of captain Steve’s fishing vessel
On 27 October 2016, Hannes, Chris and Julie joined researchers from the Stellwagen Bank National Marine Sanctuary (David Wiley, Anne-Marie Runfola, Brad Cabe, Michael Thompson), the USGS (Page Valentine, Dann Blackwood) and the crew of the R/V Auk (Dave Slocum, James Stasinos) to embark on our first of five total sampling missions in this enigmatic marine habitat. Our goal, catching live Northern sand lance, Ammodytes dubius, the so critical forage fish species that is referred to as the “backbone of the sanctuary”, because all kinds of marine predators from whales to tuna to seabirds gather on the bank to feast on them.
Our renewed efforts are part of our recently funded NOAA Regional SeaGrant Project to investigate the effects of ocean warming, acidification and low oxygen on sand lance early life stages.
As before, we first started by deploying a Seaboss sediment grab, which allows our colleagues from the USGS to characterize sediment types in association with the occurrence of sand lance. In addition, however, we brought a small beam trawl along for the first time to find out, whether we could more effectively catch sand lance and then transport them live to our seawater facility at UConn Avery Point. We are happy report that the efforts by all have paid off and that there are now ~ 180 adult ripening sand lance swimming in our tanks. Thanks all, see you again for the second survey in a few weeks!
Check out the video below, made from clips of no less than five different GoPro’s (if you listen carefully, around 2:40 into the clip you’ll hear the singing of some nearby humpback whales):
October 10th 2016 was a special day for our still young lab here at the University of Connecticut, Today, the ICES Journal of Marine Science published the paper of Chris Murray et al., which is the first of hopefully many publications of our experimental findings originating out of our new laboratory facility here at UConn Avery Point.
Chris and his co-authors report on a large-scale, quantitative rearing experiment on Atlantic silversides eggs, larvae and juveniles under contrasting CO2 conditions that took place between May – September 2015. This novel experiment was designed to address three critical issues lacking in previous ocean acidification research on fish. First, the study spanned several ontogenetic stages. Second, it used very large numbers of individuals to robustly characterize not just potential shifts in mean responses, but also changes in the distribution of length, weight, and condition factor. Third, it provided food at standardized, non-excess levels to prevent that potential metabolic costs of high CO2 exposure could be compensated by survivors simply by eating more food.
Overall the study demonstrated seemingly small but significant growth reductions due to high CO2 and identified a small number of fatty acids that were of significantly different concentrations in high vs. control juveniles.
Seasonal dynamics in Atlantic Silverside abundance, spawning, and offspring sensitivity to low pH and oxygen
The Summer Undergraduate Research Fund (SURF) offers a summer stipend of up to $3,500 + $500 research. The Evolutionary Fish Ecology Lab offers a variety of suitable topics for undergraduates to work on.
Deadline for applications is January, 20th 2017.
NOAA and Sea Grant fund $800,000 in research to understand effects of ocean changes on iconic Northeast marine life
The Ocean & Atmospheric Research program (OAR) of NOAA and Sea Grant just announced the winners of its most recent round of research funding to better understand the consequences of ocean warming and acidification on key marine resources in U.S. Northeast coastal waters. We are happy and proud that our proposed work on the climate sensitivity of Northern sand lance (Ammodytes dubius) was one of the four projects selected for funding. This is particularly good news for Chris Murray, who for his PhD can now expand his experimental rearing expertise to this important species.
This work will be conducted collaboratively with colleagues from NOAA (David Wiley), USGS (Page Valentine), Boston University (Les Kaufman), and Woods Hole Oceanographic Institution (Scott Gallager).
You can read the official announcement as it appeared on 6 September 2016 on NOAA’s News site.
On a balmy July 1st the lab returned to Mumford Cove excited at the prospect of seining without dawning waders for the first time this year! Chris and Rafeed conducted the first seine while Jake remained on the beach and photographed the experience. On the second seine, Hannes accompanied Rafeed while Chris weighed the first sample. As expected the species richness and diversity of the seines were less than that of previous excursions. The abundance of silversides was down, while their sex ratio was skewed towards females. Despite a decline in mature silversides, several juveniles were caught, indicating a budding cohort. Perhaps more young silversides will find their way into the lab’s net in the future. Only time will tell!