Author: Hannes Baumann

[Presentation] Hannes gives first NECAN webinar on sand lance CO2 sensitivity

sandlance-webinar
10 September 2019. Hannes started of the new 2019 NECAN Sea Grant Webinar Series with a presentation of our past years of research on the sensitivity of Northern sand lance (Ammodytes dubius) to ocean acidification and warming. The purpose of this webinar series is to highlight four projects funded through NOAA Sea Grant following the release of the NECAN paper published in Oceanography Magazine in 2015, “Ocean and Coastal Acidification off New England and Nova Scotia.”

Thanks to the more than 50 people who attended the webinar. If you have missed it, it’s accessible for free online. See below.


[Lab News] Chris Murray starts his post-doc at University of Washington

Chris-Murray

15 August 2019. The Baumann lab is happy to announce that Chris Murray has started his new chapter of life and science at the west coast with the University of Washington. Congrats Chris, we know you will do great!

Chris started his PhD at UConn/Avery Point in September 2014, after finishing his MS in May 2014 at Stony Brook University, NY. While building on his experience in ocean acidification research, for his PhD he studyied multi-stressor effects of OA and hypoxia on coastal marine fishes. He had an outstanding part in designing and building our factorial larval rearing system ("Larval city") in UConn Rankin Seawater lab. The system allows up to nine independent, static or fluctuating CO2 x O2 environments simultaneously. It has been in full use during spring and summer months of the past four years.

After a phenomenally dedicated four years, Chris defended his PhD in December 2018 and recently graduated with this PhD from UConn.

His thesis titled An experimental evaluation of the sensitivity of coastal marine fishers acidification, hypoxia, and warming

is publicly available at the OpenCommons Site of the UConn Library.


Four recent publications of Chris:


Check out some footage of Chris and his lab mates over the years below!

[Lab news] Emma Cross now at Southern Connecticut State University

25 August 2019. We are happy to announce that Dr. Emma Cross has started her new faculty position as Assistant Professor in Coastal/Marine Science at Southern Connecticut State University (New Haven, CT). Emma at the joined our team in September 2017 and worked tirelessly to investigate how fluctuating pH and oxygen environments typical of nearshore environments affect early life survival and growth. Emma was also instrumental in all of our follow-up, ongoing work on sand lance sensitivity to ocean warming and acidification.

Emma was an incredible enrichment to our lab, and her proximity will sure enable lots of collaborative work in the future!
A big hat tip to Emma!


Emma-farewell

[Lab news] Deanna Elliott completes her NSF-REU project

10 August 2019. Deanna Elliott from Arizona State University has just successfully completed her summer research project as our third NSF-REU student. For her REU-project she reared Atlantic silverside larvae under different feeding regimes to create fish of different body sizes and then analyzed them for trace levels of mercury in their tissue. She tested the hypothesis that mercury concentrations in fish can be used as a proxy for ingestion rates, which are important to trophic ecosystem models to perform better.

Here’s what Deanna had to say about her REU research experience:

This summer, I spent 10 weeks in the Baumann Evolutionary Fish Ecology lab and had a blast! The entire lab was incredibly welcoming, and made me feel at home immediately. We jumped right into my project and I had so many new experiences, it was almost overwhelming. We went seining for silversides in Mumford Cove, fertilized fish eggs… I became a Fish Mommy for the first time, rearing approximately 500 juvenile silversides for five weeks—I had never even had a fish tank before! I also got valuable experience in the chemistry lab, analyzing the mercury content of my Fish Babies. I felt very welcomed and received a lot of encouragement on my project and the presentation I had to give at the end of the program. Hannes and Zosia especially made me feel appreciated and supported, and that made all the difference in my experience with UCONN’s marine biology REU.

Check out some of the impressions from Deanna’s time at UConn. Great job, Deanna!


Deanna-farewell

[New publication] Science publishes our silverside genetic study!

Fishing changes silverside genes
1 August 2019. We are overjoyed that our paper on genetic changes in experimental silverside populations subjected to strong size-selective fishing has just been published by Science!


Therkildsen, N.O., Wilder, A.P., Conover, D.O., Munch, S.B., Baumann, H., and Palumbi, S.R. (2019)
Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing
Science 365:487-490
Related perspective: Fishing for answers Science 365: 443-444 | Cornell Press release | UConn Press release


Over recent decades, many commercially harvested fish have grown slower and matured earlier, which can translate into lower yields. Scientists have long suspected that rapid evolutionary change in fish caused by intense harvest pressure is the culprit.

Now, for the first time, researchers have unraveled genome-wide changes that prompted by fisheries – changes that previously had been invisible, according to a study published in Science by a team of researchers including Hannes Baumann, UConn assistant professor of Marine Sciences, who collaborated with researchers at Cornell University, the University of Oregon, the National Marine Fisheries Service, and Stanford University.

In unprecedented detail, the study shows sweeping genetic changes and how quickly those changes occur in fish populations extensively harvested by humans, says Baumann.

“Most people think of evolution as a very slow process that unfolds over millennial time scales, but evolution can, in fact, happen very quickly,” said lead author Nina Overgaard Therkildsen, Cornell assistant professor of conservation genomics in the Department of Natural Resources.

Therkildsen-fig1
Observed shifts in adult size. Trends across generations in mean length at harvest (standardized as the difference from the mean of the control populations in each generation) ± the standard deviations in up-selected (blue shades), down-selected (yellow and orange shades), and control populations (green shades).

The all-pervasive human meddling in our planet’s affairs undeniably reached the genetic make-up of its organisms.
— Hannes Baumann, UConn.

In heavily exploited fish stocks, fishing almost always targets the largest individuals. “Slower-growing fish will be smaller and escape the nets better, thereby having a higher chance of passing their genes on to the next generations. This way, fishing can cause rapid evolutionary change in growth rates and other traits,” said Therkildsen. “We see many indications of this effect in wild fish stocks, but no one has known what the underlying genetic changes were.”

Therkildsen and her colleagues took advantage of an influential experiment published back in 2002. Six populations of Atlantic silversides, a fish that grows no bigger than 6 inches in length, had been subjected to intense harvesting in the lab. In two populations, the largest individuals were removed; in another two populations, the smallest individuals were removed; and in the final two populations, the fishing was random with respect to size.

After only four generations, these different harvest regimes had led to evolution of an almost two-fold difference in adult size between the groups. Therkildsen and her team sequenced the full genome of almost 900 of these fish to examine the DNA-level changes responsible for these striking shifts.

The team identified hundreds of different genes across the genome that changed consistently between populations selected for fast and slow growth. They also observed large linked-blocks of genes that changed in concert, dramatically shifting the frequencies of hundreds of genes all at the same time.

Surprisingly, these large shifts only happened in some of the populations, according to the new paper. This means that there were multiple genomic solutions for the fish in this experiment to get either larger or smaller.

“Some of these changes are easier to reverse than others, so to predict the impacts of fisheries-induced evolution, it is not enough to track growth rates alone, we need to monitor changes at the genomic level,” said Therkildsen.

When the experiment was originally conducted nearly two decades ago by co-authors David Conover, professor of biology at the University of Oregon, and Stephan Munch of the National Marine Fisheries Service, the tools to study the genomic basis of the rapid fisheries-induced evolution they observed were not available. Fortunately, Conover and Munch had the foresight to store the samples in a freezer, making it possible to now return – armed with modern DNA sequencing tools – and reveal the underlying genomic shifts.

Research like this can assess human impacts, and improve humanity’s understanding of “the speed, consequences and reversibility of complex adaptations as we continue to sculpt the evolutionary trajectories of the species around us,” Therkildsen said.

“What’s most fascinating about this is that life can find different genetic ways to achieve the same result. In this study, two experimental populations evolved smaller body size in response to the selective removal of the largest fish, which is what most trawl fisheries do. However, only by looking at the genetic level we demonstrated that these two experimental populations evolved via two completely different genetic paths,” says Baumann.

The good news for the Atlantic silversides is that the fisheries selection was able to tap into the large reservoir of genetic variation that exists across the natural range of this species from Florida into Canada, said Therkildsen: “That genetic bank fueled rapid adaptation in the face of strong fishing pressure. Similar responses may occur in response to climate-induced shifts in other species with large genetic variability.”

“Scientists have coined the term Anthropocene in recognition of the all-pervasive human alteration of the earth’s climate, oceans, and land. No matter how ‘pristine’ a piece of nature may look to us at first glance, examine it thoroughly enough and you will find a trace of human in it. Take a cup of water from the middle of Pacific Ocean and a handful of sand from a ‘pristine’ beach – and you will find little plastic particles under the microscope,” says Baumann. “The parallel to this study is that the all-pervasive human meddling in our planet’s affairs now undeniably reached the genetic make-up of its organisms. Today’s fishes may superficially look the same as always, but their genes are not. They bear witness to human alteration.”

In addition to Baumann, Therkildsen, Conover, and Munch, co-authors included former Cornell postdoctoral researcher Aryn P. Wilder, now a researcher at San Diego Zoo Institute for Conservation Research; and Stephen R. Palumbi, Stanford University.

This work was funded by the National Science Foundation.

[Lab news] NSF-REU student Deanna Elliott joins the Baumann lab

Deanna-Elliott
Deanna Elliott is a junior at Arizona State University who has joined the Baumann lab in summer 2019 as our third NSF-REU student. Deanna has experimented with locusts before, but now strives to become an expert fish rearer. Her project will rear Atlantic silverside larvae under different feeding regimes to create fish of different body sizes and then analyze the these fish for trace levels of mercury in their tissue. She will test the hypothesis that mercury concentrations in fish can be used as a proxy for ingestion rates, which are important to improve trophic ecosystem models. Welcome, Deanna!


[Atlantic silverside, Menidia menidia, mercury, ingestion rates]
dbellio2@asu.edu


An early brainstorming sketch on the whiteboard, outlining Deanna’s REU experiment
Fertilizing
Deanna starts her REU experiment by fertilizing strip-spawned silverside eggs

[Lab news] Hannes, Chris and Emma at the 43rd Larval Fish Conference!

hotel-view_web


ChrisHannesEmma_web
Chris, Hannes, and Emma

CapFormentor3_web
Beautiful view from Mallorca’s most northern point, Cap Formentor

peterdominiquearildHannes_web
Peter Gronkjaer, Dominique Robert, Arild Folkvord, Hannes during the conference tour
25 May 2019. Hannes, Chris and Emma attended this years 43rd Annual Larval Fish Conference in Palma de Mallorca, Spain. The event was hosted by IMEDEA’s Ignacio Catalan and colleagues and was attended by more than 140 participants. As usual, the small but international make-up of the meeting and made it into a memorable event of science, networking and seed for potential future collaborations. While Chris reported on our past experiments on factorial CO2 by O2 effects on Atlantic silverside early life stages, Emma presented the latest findings on our silverside experiments using computer-controlled CO2 and O2 co-fluctuations.

Before and after the conference, there was also some time to explore the beautiful island of Mallorca with its breathtaking mountain scenery and turquoise coves.


Chris and Emma’s presented:

  • Murray, C.S., Cross, E.L., and Baumann H. A factorial evaluation of the combined effects of acidification and hypoxia in Atlantic silverside offspring. Talk.
  • Cross, E.L., Murray, C.S. and Baumann H.Diel and tidal cycles of CO2 and dissolved oxygen conditions provide physiological refuge to a coastal forage fish, Menidia menidia under acidification and hypoxia. Talk.

Lucas-Jones-gradCallie-Concannon
A special thanks to Lucas and Callie for holding the fort at home!

CaladesMoro
Cala des Moro

MarthaHannes
Martha Moyano and Hannes
Valdemossa_web
Valdemossa

CapFormentor2_web
Cap Formentor

[Lab news] Callie attends UConn climate change symposium

Climatestudents
UConn DMS students present their research (u.l. Kelly McGarry, u.r. Halle Berger, l.l. Sarah McCart, l.r. Alec Shub
By Callie Concannon. On April 30th, four graduate students from the Marine Science Department traveled to UConn, Storrs to present their research at UConn’s 2nd Climate Research Symposium cohosted by the Geology and Marine Science departments. The students were Kelly McGarry (Ph.D student; top left), Halle Berger (Master’s student; top right), Sarah McCart (Master’s student; bottom left) and Alec Shub (Master’s student; bottom right). Everyone’s presentations were well received, and Sarah McCart even won the graduate student poster competition!

The event featured two keynote speakers; Professor Margaret Rubega of UConn, and Professor Tim Cronin of MIT. Professor Rubega talked about science communication and how the scientific community could better communicate their climate change research to non-scientists without using overbearing jargon and too many words. Professor Cronin gave a speech on his past research on the suppression of Arctic air formation with climate warming.


  • McCart, S., Lund, D., Seeley, E., Asimov, P., Lewis, M., and Mudahy, A.L. Testing the sea level hypothesis with new results from the Pacific.
  • McGarry, K., Siedlecki, S., Alin, S., and Salisbury, J. Empirical models for estimating the carbonate system along the northeastern coast of the U.S.
  • Berger, H., Siedlecki, S., Matassa, C., Alin, S., Kaplan, I., Pilcher, D., and Newton, J. Using projections from regional oceanographic forecasts to assess the vulnerability of the Dungeness crab to climate change stressors.
  • Shub, A., Lund, D., and Mudahy, A.L., Does expansion of Antarctic bottom water result in storage of CO2 in the abyssal Atlantic?

[Lab news] Emma turns 30 and starts a new silverside experiment!

3 May 2019. It is Emma’s 30th birthday today, so naturally she celebrates it by starting a new, large experiment with Atlantic silversides, thus sharing her special day with more than 5,000 little embryos that are now developing in our system.

Like in our previous experiments, we are mimicking current and future coastal environments that fluctuate daily in CO2 and oxygen levels – thanks to our computer-controlled system that manipulates these levels in up to nine tanks simultaneously.

But this time, our additional goal is to keep track of sib-ship. We produced full sibs (same mother, same father), half-sibs (same mother or father, different father or mother) and unrelated individuals, and by keeping them separate we will later be able to calculate additive genetic variances in the various traits under different conditions (i.e., heritability) and examine trait correlations.

Breeding design


As usual, this could not be done by one person, so the entire lab helped preparing, seining, and fertilizing embryos on this frantic day. Great job all!

Emma-Cross
Emma
hbpic2
Hannes
Lucas-Jones-grad
Lucas
Callie-Concannon
Callie
Chris-Murray
Chris

[Lab news] Whole life cycle CO2 fish are getting sampled

18 April 2019. This Thursday was a long day in the Baumann lab, because we sampled and processed over 200 adult silversides from a unique experiment. These fish were fertilized in the lab and reared from eggs to adulthood under different temperatures and contrasting CO2 conditions. We are interested to see, if future ocean conditions have measurable effects on this species fecundity, growth, and oocyte characteristics. We also took tissue and genetic samples, with an effective line-up of hands, i.e., Hannes, Emma, Chris, Callie and Lucas.
Good teamwork all!


Silverside-teamwork-041819