Imagery

[Research news] Live staining of silverside neuromasts at URI

By Emma Cross.

Neuromast01-heli
23 Juli 2018. Yesterday Hannes and Emma took a short road trip to the University of Rhode Island to visit Professor Jacqueline Webb’s lab to learn about in vivo fluorescent imaging.

This technique involves placing live fish in a fluorescent mitrochondrial stain for 5 minutes before imaging different areas of the fish under a dissecting microscope equipped with an epiflourescence light source. This allowed us to visualize small sense organs called neuromasts located in tubular canals in the head, trunk and tail, which form the fish sensory lateral line system used to detect water flows.


We are interested to see if high CO2 conditions affect these neuromasts in the Atlantic silverside, which could impact their critical schooling behaviors.

neuromast-emma-jackie
neuromast-hand

Take a look at some of the stunning images below! Thank you to Jackie and all the lab for a fun-filled day!

neuromast02-heli
neuromast-emma

[Lab news] Baumann lab attends the Larval Fish Conference in Victoria

Victoria07


Emma-Cross
Sydney-Stark
Holding the fort at the Rankin lab were Emma and Sydney, who did an excellent job. Thank you guys!

Victoria08
The Delta Victoria Ocean Pointe Resort was the conference venue

Victoria10
Before the conference, we all attended a workshop on larval fish identification

https://www.fishersci.com/shop/products/fisherbrand-class-a-clear-glass-threaded-vials-attached-caps-pe-poly-seal-cone-liner-8/14955326
Whale-watching with Corinne, Julie & Chris
Here is how Julie experienced her first LFC:

Ever since attending the American Fisheries Society conference in 2014, I’ve wanted to go to another fish-focused conference. I was lucky enough to attend the 42nd annual Larval Fish Conference this year in Victoria, British Columbia, and it surpassed all my expectations. The week started off with a larval fish identification workshop where we got to learn techniques from renowned larval fish experts (and see some really cool fish larvae!). The talks were impressive and thought-provoking, providing many new ideas for research and how to give an engaging talk. My favorite part was meeting all the larval fish ecologists whose publications I’ve been reading for my thesis. I spent most of my evenings exploring Victoria with other grad students attending the conference and left with many new friends from institutes all over the world! The trip ended with a whale watch, where we saw a pod of 5 Orcas. Overall, the Larval Fish Conference was a great experience that I hope to someday attend again!


Oral presentations:

  • Pringle, J. and Baumann, H. Sex-specific growth and mortality patterns in juvenile Atlantic silversides (Menidia menidia) from Connecticut waters. Talk. 42nd Larval Fish Conference, Victoria, BC, Canada 24-28 June 2018
  • Murray, C.S., Wiley, D., and Baumann, H. Early life stages of the northern sand lance Ammodytes dubius show high sensitivity to acidification and warming in a CO2 × temperature factorial experiment. Talk. 42nd Larval Fish Conference, Victoria, BC, Canada 24-28 June 2018

Victoria09
Water taxi in Victoria

Victoria03
Old Victoria
Victoria02
Beyond this point …
Victoria05
Orca whale
Victoria04
Harbor front with Parliament building
Victoria06
Local celebrity, the one eyed seal

[Lab video] How a new silverside experiment starts

29 June 2018. A new experiment with Atlantic silversides (Menidia menidia) starts and as usual, it’s an all hand on deck operation. This time, we have Chris Tsang shadowing all of us and Emma professionally explaining the process.

Have a look for yourself!

[Lab news] Video of Mumford Cove probe swap

14 June 2018. Members of the Baumann and Mason lab went on a trip to Mumford Cove, today, and Chris Tsang went along with his GoPro. Thanks to Charlie, the skipper, the ride was smooth and a pleasure, a swapping our pH, Temperature, oxygen, and salinity sensor was successfully swapped with a new one recording for the next weeks in 30 minute intervals. Wes Hoffman from the Mason lab, collected zooplankton with a Bongo-net. Sydney Stark, our NSF-REU student this summer, came along just for the fun.

See the fun for yourself!

[Research news] A day at Harvards MCZ

Friday, 8 June 2018. Hannes and Maria traveled to Boston’s Harvard University to meet with Valentina di Santo from the Lauder Lab at the Museum for Comparative Zoology. Thanks to our collaborators there, we were able to use a 2D-digital X-ray machine there, which we needed to complete the next big step in our Menidia Gene project.

Vials
Genetic & body samples went in different vials
Maria-vials
Maria Akopyan processing the fish after x-raying
Maria-Valentina
Maria and Valentina in the shark section of the collection

A few weeks ago, Maria had already measured each individual fish's length, weight, shape, routine metabolism, and maximum sustained swim speed. The next trait we're keen on mapping quantitatively to the silverside genome is the number of vertebrae, which we know increases in wild populations from south to north. What will our South/North hybrid F2 generation show?
Lunch-with-George-Lauder-and-lab
At the Lauder lab, ‘lunch together’ is common thing

Hannes-Latimeria
The famous Latimeria from the collection
Thanks to Valentina's excellent help, the work went without a hitch. At the end, we even had some spare time to enjoy the great atmosphere int the Lauder Lab during lunchtime, the tour through various lab installations, the experimental fish, and even the adjacent Harvard Zoological museum. Thank you all for the fun day at Harvard!

x-ray-settings
Settings used for x-raying juvenile silversides
Hannes-Valentina
Hannes and Valentina in the x-ray room
George-Lauder-swim-lab
George Lauder adjusting equipment in the swim lab

The 282 fish are now split in a DNA sample for extraction and a body sample for further trait measurements.

X-ray-fish

[New publication] No CO2 effects on silverside starvation

31 March 2018. We’re happy to announce that Marine Biology just published our latest study examining the starvation tolerance of silverside larvae and juveniles at contrasting CO2 conditions. We compiled observations from five separate experiments spanning different years, laboratories, temperatures, life stages, and CO2 levels. Contrary to expectation, we found that starvation rates were largely independent of the CO2 environment in this fish species.

Elle-Parks_s
One major set of data was produced by Elle Parks as part of her Research Experience for Undergraduates (NSF-REU) in summer 2017. Well done, everybody!


BaumannLab170609b285s
Hannes shows Elle Parks (REU 2017), how individual screen with enumerated embryos are suspended into the replicate rearing containers. (Photo: Peter Morenus, UConn)
BaumannLab170609b046s
On 9 June, Elle and Julie strip-spawn Atlantic silverside females into spawning dishes covered in window screen for eggs to attach. (Photo: Peter Morenus, UConn)

Starvation-figure-MABI2018
M. menidia. (A) Relative cumulative starvation mortalities of early juveniles reared under ambient (grey line, diamonds) vs. high CO2 conditions (black line, circles). Symbols depict individual replicates, lines represent treatment means. (B) Total length of juveniles perishing during the experiment at ambient (grey diamonds) vs. high CO2 conditions (black circles). Lines represent the median(solid lines), 5th and 95th percentiles (dashed lines) of TL estimated with locally weighted, non-parametric density estimators. The initial TL distribution at the beginning of the experiment is depicted on day 0 as the median (white circle), 5th/95th percentiles (whiskers) and the minimum and maximum (white stars).

[Research news] Silversides in a CT scanner

26 March 2018. Today we got our first glimpse of an incredible new way of imaging the inner calcified structures of a fish body, particularly the ear bones (otoliths), of which every teleost fish has six, three on each side inside the skull. Otoliths are long known to fish ecologists for their properties to record and store information about a fish’s age, growth and habitat. With an adult Atlantic silverside, Hannes visited John Shepherd, facilities scientist and member of the Goldhamer lab at UConn, Storrs (Biology Physics Building), who showed us the use of a new, state-of-the-art micro CT-scanner (IVIS). Turns out, the system effortlessly imaged all six otoliths inside of the fish’s head. Later in the year, we will use the technique to image silversides reared at contrasting CO2 conditions to see whether they differ in their otolith size, volume, and structure. Thank you, John, for this truly inspiring demonstration!

CTscan Menidia
IVIS
CTscan-Menidia01
CTscan-Menidia02

[Research feature] Our multistressor NSF project in the spotlight

This research feature makes the case for multistressor research to a broad general audience and introduces our NSF project and its participants. Download the feature by clicking on the pictures or the link below.

Baumann-research-feature-2